Template:MedianRanks: Difference between revisions
Kate Racaza (talk | contribs) No edit summary |
Kate Racaza (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
==== Median Ranks ==== | ==== Median Ranks ==== | ||
Median ranks are used to obtain an estimate of the unreliability | Median ranks are used to obtain an estimate of the unreliability for each failure. It is the value that the true probability of failure, <span class="texhtml">''Q''(''T''<sub>''j''</sub>),</span> should have at the <span class="texhtml">''j''<sup>''t''''h'''''</sup></span>'''''f'''''ailure out of a sample of <span class="texhtml" /> | ||
The rank can be found for any percentage point, <span class="texhtml">''P''</span>, greater than zero and less than one, by solving the cumulative binomial equation for <span class="texhtml">''Z''</span> . This represents the rank, or unreliability estimate, for the <span class="texhtml">''j''<sup>''t''''h'''</sup></span> | The rank can be found for any percentage point, <span class="texhtml">''P''</span>, greater than zero and less than one, by solving the cumulative binomial equation for <span class="texhtml">''Z''</span> . This represents the rank, or unreliability estimate, for the <span class="texhtml">''j''<sup>''t''''h'''''</sup></span>failure in the following equation for the cumulative binomial:'' '' | ||
::<math>P=\underset{k=j}{\overset{N}{\mathop \sum }}\,\left( \begin{matrix} | ::<math>P=\underset{k=j}{\overset{N}{\mathop \sum }}\,\left( \begin{matrix} |
Revision as of 21:30, 6 March 2012
Median Ranks
Median ranks are used to obtain an estimate of the unreliability for each failure. It is the value that the true probability of failure, Q(Tj), should have at the jt'hfailure out of a sample of
The rank can be found for any percentage point, P, greater than zero and less than one, by solving the cumulative binomial equation for Z . This represents the rank, or unreliability estimate, for the jt'hfailure in the following equation for the cumulative binomial:
- [math]\displaystyle{ P=\underset{k=j}{\overset{N}{\mathop \sum }}\,\left( \begin{matrix} N \\ k \\ \end{matrix} \right){{Z}^{k}}{{\left( 1-Z \right)}^{N-k}} }[/math]
where N is the sample size and j the order number.
The median rank is obtained by solving this equation for Z at P = 0.50,
- [math]\displaystyle{ 0.50=\underset{k=j}{\overset{N}{\mathop \sum }}\,\left( \begin{matrix} N \\ k \\ \end{matrix} \right){{Z}^{k}}{{\left( 1-Z \right)}^{N-k}} }[/math]
For example, if N=4 and we have four failures, we would solve the median rank equation four times; once for each failure with j=1, 2, 3 and 4, for the value of Z. This result can then be used as the unreliability estimate for each failure or the y plotting position. (See also the The Weibull distribution chapter for a step-by-step example of this method.) The solution of cumuative binomial equation for Z requires the use of numerical methods.