Template:Eyring-log rl: Difference between revisions
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
<br> | <br> | ||
where: | |||
<br> | <br> | ||
Line 13: | Line 13: | ||
<br> | <br> | ||
and: | |||
<br> | <br> | ||
Line 23: | Line 23: | ||
<br> | <br> | ||
::<math>{{t}_{R}}={{e}^{T_{R}^{\prime }}}</math> | ::<math>{{t}_{R}}={{e}^{T_{R}^{\prime }}}</math> | ||
<br> |
Revision as of 23:54, 27 February 2012
Reliable Life
For the Eyring-lognormal model, the reliable life, or the mission duration for a desired reliability goal, [math]\displaystyle{ {{t}_{R}}, }[/math] is estimated by first solving the reliability equation with respect to time, as follows:
- [math]\displaystyle{ T_{R}^{\prime }=-\ln (V)-A+\frac{B}{V}+z\cdot {{\sigma }_{{{T}'}}} }[/math]
where:
- [math]\displaystyle{ z={{\Phi }^{-1}}\left[ F\left( T_{R}^{\prime },V \right) \right] }[/math]
and:
- [math]\displaystyle{ \Phi (z)=\frac{1}{\sqrt{2\pi }}\int_{-\infty }^{z({T}',V)}{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt }[/math]
Since [math]\displaystyle{ {T}'=\ln (T) }[/math] the reliable life, [math]\displaystyle{ {{t}_{R,}} }[/math] is given by:
- [math]\displaystyle{ {{t}_{R}}={{e}^{T_{R}^{\prime }}} }[/math]