Template:Alta exponential reliability function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 1: Line 1:
====The Reliability Function====
====The Reliability Function====
The 1-parameter exponential reliability function is given by:
The 1-parameter exponential reliability function is given by:
<br>
<br>
::<math>R(T)={{e}^{-\lambda T}}={{e}^{-\tfrac{T}{m}}}</math>
::<math>R(T)={{e}^{-\lambda T}}={{e}^{-\tfrac{T}{m}}}</math>
<br>
<br>
This function is the complement of the exponential cumulative distribution function or:  
This function is the complement of the exponential cumulative distribution function or:  
<br>
<br>
::<math>R(T)=1-Q(T)=1-\int_{0}^{T}f(T)dT</math>
::<math>R(T)=1-Q(T)=1-\int_{0}^{T}f(T)dT</math>
<br>
<br>
:and:  
and:  
 
<br>
<br>
::<math>R(T)=1-\int_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}}</math>
::<math>R(T)=1-\int_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}}</math>
<br>
<br>

Revision as of 23:22, 27 February 2012

The Reliability Function

The 1-parameter exponential reliability function is given by:


[math]\displaystyle{ R(T)={{e}^{-\lambda T}}={{e}^{-\tfrac{T}{m}}} }[/math]


This function is the complement of the exponential cumulative distribution function or:


[math]\displaystyle{ R(T)=1-Q(T)=1-\int_{0}^{T}f(T)dT }[/math]


and:


[math]\displaystyle{ R(T)=1-\int_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}} }[/math]