Template:Alta exponential mean: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 1: | Line 1: | ||
====The Mean or MTTF==== | ====The Mean or MTTF==== | ||
The mean, <math>\overline{T},</math> or Mean Time To Failure (MTTF) of the 1-parameter exponential distribution is given by: | The mean, <math>\overline{T},</math> or Mean Time To Failure (MTTF) of the 1-parameter exponential distribution is given by: | ||
<br> | <br> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
\overline{T}& = \int_{0}^{\infty }t\cdot f(t)dt=\int_{0}^{\infty }t\cdot \lambda \cdot {{e}^{-\lambda t}}dt | \overline{T}& = \int_{0}^{\infty }t\cdot f(t)dt=\int_{0}^{\infty }t\cdot \lambda \cdot {{e}^{-\lambda t}}dt = \frac{1}{\lambda } | ||
\end{align}</math> | \end{align}</math> | ||
<br> |
Revision as of 22:37, 27 February 2012
The Mean or MTTF
The mean, [math]\displaystyle{ \overline{T}, }[/math] or Mean Time To Failure (MTTF) of the 1-parameter exponential distribution is given by:
- [math]\displaystyle{ \begin{align} \overline{T}& = \int_{0}^{\infty }t\cdot f(t)dt=\int_{0}^{\infty }t\cdot \lambda \cdot {{e}^{-\lambda t}}dt = \frac{1}{\lambda } \end{align} }[/math]