Template:Cd gll weibull: Difference between revisions
(Created page with '===Cumulative Damage General Log-Linear - Weibull=== <br> Given <math>n</math> time-varying stresses <math>\underline{X}=({{X}_{1}}(t),{{X}_{2}}(t)...{{X}_{n}}(t))</math> , th…') |
|||
Line 4: | Line 4: | ||
::<math>\frac{1}{\eta \left( t,\overset{\_}{\mathop{x}}\, \right)}=s(t,\overset{\_}{\mathop{x}}\,)={{e}^{^{^{-{{a}_{0}}-\overset{n}{\mathop{\underset{j=1}{\mathop{\mathop{}_{}^{}}}\,}}\,{{\alpha }_{j}}{{x}_{j}}(t)}}}}</math> | ::<math>\frac{1}{\eta \left( t,\overset{\_}{\mathop{x}}\, \right)}=s(t,\overset{\_}{\mathop{x}}\,)={{e}^{^{^{-{{a}_{0}}-\overset{n}{\mathop{\underset{j=1}{\mathop{\mathop{\sum}_{}^{}}}\,}}\,{{\alpha }_{j}}{{x}_{j}}(t)}}}}</math> | ||
where <math>{{\alpha }_{j}}</math> are model parameters. | where <math>{{\alpha }_{j}}</math> are model parameters. | ||
<br> | <br> | ||
The Weibull reliability function of the unit under multiple stresses is given by: | The Weibull reliability function of the unit under multiple stresses is given by: | ||
Line 14: | Line 15: | ||
::<math>R(t,\overset{\_}{\mathop{x}}\,)={{e}^{-{{\left( I(t,\overset{\_}{\mathop{x}}\,) \right)}^{\beta }}}}</math> | ::<math>R(t,\overset{\_}{\mathop{x}}\,)={{e}^{-{{\left( I(t,\overset{\_}{\mathop{x}}\,) \right)}^{\beta }}}}</math> | ||
where: | |||
::<math>I(t,\overset{\_}{\mathop{x}}\,)=\underset{0}{\mathop{\overset{t}{\mathop{\ | |||
::<math>I(t,\overset{\_}{\mathop{x}}\,)=\underset{0}{\mathop{\overset{t}{\mathop{\int{}^{}}}\,}}\,\frac{du}{{{e}^{^{{{a}_{0}}+\underset{j=1}{\mathop{\overset{n}{\mathop{\mathop{\sum}_{}^{}}}\,}}\,{{\alpha }_{j}}{{x}_{j}}(u)}}}}</math> | |||
Line 30: | Line 32: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& \ln (L)= & \Lambda =\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}\ln [\beta s({{T}_{i}},{{\overset{\_}{\mathop{x}}\,}_{i}}){{\left( I({{T}_{i}},{{\overset{\_}{\mathop{x}}\,}_{i}}) \right)}^{\beta -1}}]-\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}{{\left( I({{T}_{i}},{{\overset{\_}{\mathop{x}}\,}_{i}}) \right)}^{\beta }} | & \ln (L)= & \Lambda =\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}\ln [\beta s({{T}_{i}},{{\overset{\_}{\mathop{x}}\,}_{i}}){{\left( I({{T}_{i}},{{\overset{\_}{\mathop{x}}\,}_{i}}) \right)}^{\beta -1}}]-\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}{{\left( I({{T}_{i}},{{\overset{\_}{\mathop{x}}\,}_{i}}) \right)}^{\beta }} -\overset{S}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime }{{\left( I(T_{i}^{\prime },\overset{\_}{\mathop{x}}\,_{i}^{\prime }) \right)}^{\beta }}+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }] | ||
\end{align}</math> | \end{align}</math> | ||
where: | |||
Line 44: | Line 45: | ||
and: | |||
<br> | <br> | ||
• <math>{{F}_{e}}</math> is the number of groups of exact time-to-failure data points. | • <math>{{F}_{e}}</math> is the number of groups of exact time-to-failure data points. | ||
Line 62: | Line 61: | ||
• <math>FI</math> is the number of interval data groups. | • <math>FI</math> is the number of interval data groups. | ||
<br> | <br> | ||
• <math>N_{i}^{\prime \prime }</math> is the number of intervals in the | • <math>N_{i}^{\prime \prime }</math> is the number of intervals in the <math>{{i}^{th}}</math> group of data intervals. | ||
<br> | <br> | ||
• <math>T_{Li}^{\prime \prime }</math> is the beginning of the <math>{{i}^{th}}</math> interval. | • <math>T_{Li}^{\prime \prime }</math> is the beginning of the <math>{{i}^{th}}</math> interval. |
Revision as of 00:00, 22 February 2012
Cumulative Damage General Log-Linear - Weibull
Given [math]\displaystyle{ n }[/math] time-varying stresses [math]\displaystyle{ \underline{X}=({{X}_{1}}(t),{{X}_{2}}(t)...{{X}_{n}}(t)) }[/math] , the life-stress relationship is given by:
- [math]\displaystyle{ \frac{1}{\eta \left( t,\overset{\_}{\mathop{x}}\, \right)}=s(t,\overset{\_}{\mathop{x}}\,)={{e}^{^{^{-{{a}_{0}}-\overset{n}{\mathop{\underset{j=1}{\mathop{\mathop{\sum}_{}^{}}}\,}}\,{{\alpha }_{j}}{{x}_{j}}(t)}}}} }[/math]
where [math]\displaystyle{ {{\alpha }_{j}} }[/math] are model parameters.
The Weibull reliability function of the unit under multiple stresses is given by:
- [math]\displaystyle{ R(t,\overset{\_}{\mathop{x}}\,)={{e}^{-{{\left( I(t,\overset{\_}{\mathop{x}}\,) \right)}^{\beta }}}} }[/math]
where:
- [math]\displaystyle{ I(t,\overset{\_}{\mathop{x}}\,)=\underset{0}{\mathop{\overset{t}{\mathop{\int{}^{}}}\,}}\,\frac{du}{{{e}^{^{{{a}_{0}}+\underset{j=1}{\mathop{\overset{n}{\mathop{\mathop{\sum}_{}^{}}}\,}}\,{{\alpha }_{j}}{{x}_{j}}(u)}}}} }[/math]
Therefore, the [math]\displaystyle{ pdf }[/math] is:
- [math]\displaystyle{ f(t,\overset{\_}{\mathop{x}}\,)=\beta s(t,\overset{\_}{\mathop{x}}\,){{\left( I(t,\overset{\_}{\mathop{x}}\,) \right)}^{\beta -1}}{{e}^{-{{\left( I(t,\overset{\_}{\mathop{x}}\,) \right)}^{\beta }}}} }[/math]
Parameter estimation can be accomplished via maximum likelihood estimation methods, and confidence intervals can be approximated using the Fisher matrix approach. Once the parameters are determined, all other characteristics of interest can be obtained utilizing the statistical properties definitions (e.g. mean life, failure rate, etc.) presented in previous chapters. The log-likelihood equation is as follows:
- [math]\displaystyle{ \begin{align} & \ln (L)= & \Lambda =\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}\ln [\beta s({{T}_{i}},{{\overset{\_}{\mathop{x}}\,}_{i}}){{\left( I({{T}_{i}},{{\overset{\_}{\mathop{x}}\,}_{i}}) \right)}^{\beta -1}}]-\overset{Fe}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,{{N}_{i}}{{\left( I({{T}_{i}},{{\overset{\_}{\mathop{x}}\,}_{i}}) \right)}^{\beta }} -\overset{S}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime }{{\left( I(T_{i}^{\prime },\overset{\_}{\mathop{x}}\,_{i}^{\prime }) \right)}^{\beta }}+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }] \end{align} }[/math]
where:
- [math]\displaystyle{ \begin{align} & R_{Li}^{\prime \prime }(T_{Li}^{\prime \prime },\bar{x}_{i}^{\prime \prime })= & {{e}^{-{{\left( I(T_{Li}^{\prime \prime },\bar{x}_{i}^{\prime \prime }) \right)}^{\beta }}}} \\ & R_{Ri}^{\prime \prime }(T_{Ri}^{\prime \prime },\bar{x}_{i}^{\prime \prime })= & {{e}^{-{{\left( I(T_{Ri}^{\prime \prime },\bar{x}_{i}^{\prime \prime }) \right)}^{\beta }}}} \end{align} }[/math]
and:
• [math]\displaystyle{ {{F}_{e}} }[/math] is the number of groups of exact time-to-failure data points.
• [math]\displaystyle{ {{N}_{i}} }[/math] is the number of times-to-failure in the [math]\displaystyle{ {{i}^{th}} }[/math] time-to-failure data group.
• [math]\displaystyle{ {{T}_{i}} }[/math] is the exact failure time of the [math]\displaystyle{ {{i}^{th}} }[/math] group.
• [math]\displaystyle{ S }[/math] is the number of groups of suspension data points.
• [math]\displaystyle{ N_{i}^{\prime } }[/math] is the number of suspensions in the [math]\displaystyle{ {{i}^{th}} }[/math] group of suspension data points.
• [math]\displaystyle{ T_{i}^{\prime } }[/math] is the running time of the [math]\displaystyle{ {{i}^{th}} }[/math] suspension data group.
• [math]\displaystyle{ FI }[/math] is the number of interval data groups.
• [math]\displaystyle{ N_{i}^{\prime \prime } }[/math] is the number of intervals in the [math]\displaystyle{ {{i}^{th}} }[/math] group of data intervals.
• [math]\displaystyle{ T_{Li}^{\prime \prime } }[/math] is the beginning of the [math]\displaystyle{ {{i}^{th}} }[/math] interval.
• [math]\displaystyle{ T_{Ri}^{\prime \prime } }[/math] is the ending of the [math]\displaystyle{ {{i}^{th}} }[/math] interval.