Template:Example: Standard Actuarial Example: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with ''''Standard Actuarial Example''' Find reliability estimates for the data in Example 10 using the standard actuarial method. '''Solution''' The solution to this example is simi…')
 
No edit summary
Line 27: Line 27:


As can be determined from the preceding table, the reliability estimates for the failure times are:
As can be determined from the preceding table, the reliability estimates for the failure times are:
<center><math>\begin{matrix}
  Failure Period & Reliability  \\
  End Time & Estimate  \\
  50 & 96.2%  \\
  150 & 91.8%  \\
  200 & 84.4%  \\
  250 & 79.1%  \\
  300 & 76.2%  \\
  350 & 70.2%  \\
  400 & 60.4%  \\
  450 & 48.4%  \\
  500 & 43.0%  \\
  550 & 29.8%  \\
  600 & 22.3%  \\
  650 & 4.5%  \\
\end{matrix}</math></center>

Revision as of 19:06, 20 February 2012

Standard Actuarial Example

Find reliability estimates for the data in Example 10 using the standard actuarial method.

Solution

The solution to this example is similar to that of Example 10, with the exception of the inclusion of the [math]\displaystyle{ n_{i}^{\prime } }[/math] term, which is used in Eqn. (standact). Applying this equation to the data, we can generate the following table:

[math]\displaystyle{ \begin{matrix} Start & End & Number of & Number of & Adjusted & {} & {} \\ Time & Time & Failures, {{r}_{i}} & Suspensions, {{s}_{i}} & Units, n_{i}^{\prime } & 1-\tfrac{{{r}_{j}}}{n_{j}^{\prime }} & \mathop{}_{}^{}1-\tfrac{{{r}_{j}}}{n_{j}^{\prime }} \\ 0 & 50 & 2 & 4 & 53 & 0.962 & 0.962 \\ 50 & 100 & 0 & 5 & 46.5 & 1.000 & 0.962 \\ 100 & 150 & 2 & 2 & 43 & 0.953 & 0.918 \\ 150 & 200 & 3 & 5 & 37.5 & 0.920 & 0.844 \\ 200 & 250 & 2 & 1 & 31.5 & 0.937 & 0.791 \\ 250 & 300 & 1 & 2 & 28 & 0.964 & 0.762 \\ 300 & 350 & 2 & 1 & 25.5 & 0.922 & 0.702 \\ 350 & 400 & 3 & 3 & 21.5 & 0.860 & 0.604 \\ 400 & 450 & 3 & 4 & 15 & 0.800 & 0.484 \\ 450 & 500 & 1 & 2 & 9 & 0.889 & 0.430 \\ 500 & 550 & 2 & 1 & 6.5 & 0.692 & 0.298 \\ 550 & 600 & 1 & 0 & 4 & 0.750 & 0.223 \\ 600 & 650 & 2 & 1 & 2.5 & 0.200 & 0.045 \\ \end{matrix} }[/math]


As can be determined from the preceding table, the reliability estimates for the failure times are:

[math]\displaystyle{ \begin{matrix} Failure Period & Reliability \\ End Time & Estimate \\ 50 & 96.2% \\ 150 & 91.8% \\ 200 & 84.4% \\ 250 & 79.1% \\ 300 & 76.2% \\ 350 & 70.2% \\ 400 & 60.4% \\ 450 & 48.4% \\ 500 & 43.0% \\ 550 & 29.8% \\ 600 & 22.3% \\ 650 & 4.5% \\ \end{matrix} }[/math]