Template:Example: LogLogistic distribution example: Difference between revisions
Jump to navigation
Jump to search
[math]\displaystyle{ \overset{{}}{\mathop{\text{Table 10}\text{.3 - Test data}}}\, }[/math]
[math]\displaystyle{ \begin{matrix}
\text{Data point index} & \text{Last Inspected} & \text{State End time} \\
\text{1} & \text{105} & \text{106} \\
\text{2} & \text{197} & \text{200} \\
\text{3} & \text{297} & \text{301} \\
\text{4} & \text{330} & \text{335} \\
\text{5} & \text{393} & \text{401} \\
\text{6} & \text{423} & \text{426} \\
\text{7} & \text{460} & \text{468} \\
\text{8} & \text{569} & \text{570} \\
\text{9} & \text{675} & \text{680} \\
\text{10} & \text{884} & \text{889} \\
\end{matrix} }[/math]
No edit summary |
|||
Line 1: | Line 1: | ||
'''A Loglogistic Distribution Example''' | |||
Determine the loglogistic parameter estimates for the data given in Table 10.3. | Determine the loglogistic parameter estimates for the data given in Table 10.3. | ||
Revision as of 18:01, 20 February 2012
A Loglogistic Distribution Example
Determine the loglogistic parameter estimates for the data given in Table 10.3.
Using Times-to-failure data under the Folio Data Type and the My data set contains interval and/or left censored data under Times-to-failure data options to enter the above data, the computed parameters for maximum likelihood are calculated to be:
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 5.9772 \\ & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.3256 \end{align} }[/math]
For rank regression on [math]\displaystyle{ X\ \ : }[/math]
- [math]\displaystyle{ \begin{align} & \hat{\mu }= & 5.9281 \\ & \hat{\sigma }= & 0.3821 \end{align} }[/math]
For rank regression on [math]\displaystyle{ Y\ \ : }[/math]
- [math]\displaystyle{ \begin{align} & \hat{\mu }= & 5.9772 \\ & \hat{\sigma }= & 0.3256 \end{align} }[/math]