Weibull++ Standard Folio Data 1P-Weibull: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 29: | Line 29: | ||
<br> | <br> | ||
{{Template:Sidebarlink | {{Template:Sidebarlink|http://www.reliawiki.com/index.php/The_Weibull_Distribution | ||
|http://www.reliawiki.com/index.php/The_Weibull_Distribution | |b|c|http://www.reliawiki.com/index.php/Example:_Weibull%2B%2B_Standard_Folio_Data_1P-Weibull|}} | ||
|b | |||
|c | |||
|http://www.reliawiki.com/index.php/Example:_Weibull%2B%2B_Standard_Folio_Data_1P-Weibull| | |||
}} | |||
[[Image:Docedit.png|right|20px|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_1P-Weibull&action=edit]] | [[Image:Docedit.png|right|20px|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_1P-Weibull&action=edit]] |
Revision as of 14:40, 19 February 2012
The One-Parameter Weibull DistributionThe one-parameter Weibull distribution is a special case of the two parameter Weibull that assumes that shape parameter is known constant, [math]\displaystyle{ \beta=C \,\! }[/math] or [math]\displaystyle{ R(t)=e^{-\left( {\frac{t}{ \eta }}\right) ^{C}} \,\! }[/math] In this formulation we assume that the shape parameter is known a priori from past experience on identical or similar products. The advantage of doing this is that data sets with few or no failures can be analyzed. More... |
See also The Weibull Distribution |
See also Analysis Example |
Learn more from...
[http://www.reliawiki.com/index.php/The_Weibull_Distribution
the help files...] | |
[b the theory textbook...] | |
[c a related article...] | |
an application example... |