Weibull++ Standard Folio Data 1P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 29: Line 29:
<br>
<br>


{{Template:Sidebarlink  
{{Template:Sidebarlink|
|http://www.reliawiki.com/index.php/The_Weibull_Distribution
http://www.reliawiki.com/index.php/The_Weibull_Distribution|
|b
b|
|c
c|
|http://www.reliawiki.com/index.php/Example:_Weibull%2B%2B_Standard_Folio_Data_1P-Weibull
http://www.reliawiki.com/index.php/Example:_Weibull%2B%2B_Standard_Folio_Data_1P-Weibull|
|}}
}}


[[Image:Docedit.png|right|20px|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_1P-Weibull&action=edit]]
[[Image:Docedit.png|right|20px|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_1P-Weibull&action=edit]]

Revision as of 14:39, 19 February 2012

Webnotesbar.png

The One-Parameter Weibull Distribution

The one-parameter Weibull distribution is a special case of the two parameter Weibull that assumes that shape parameter is known constant,

[math]\displaystyle{ \beta=C \,\! }[/math]

or

[math]\displaystyle{ R(t)=e^{-\left( {\frac{t}{ \eta }}\right) ^{C}} \,\! }[/math]

In this formulation we assume that the shape parameter is known a priori from past experience on identical or similar products. The advantage of doing this is that data sets with few or no failures can be analyzed.

More...

See also The Weibull Distribution
See also Analysis Example


Learn more from...

Helpblue.png [

http://www.reliawiki.com/index.php/The_Weibull_Distribution the help files...]

Book blue.png [

b the theory textbook...]

Articleblue.png [

c a related article...]

Bulbblue.png [

http://www.reliawiki.com/index.php/Example:_Weibull%2B%2B_Standard_Folio_Data_1P-Weibull an application example...]

Docedit.png