Weibull++ Standard Folio Data 2P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 14: Line 14:
<math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math>
<math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math>
|-
|-
|  valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]
|  valign="middle" | See also [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]
|-
|-
| valign="middle" |[http://reliawiki.com/index.php/Template:Example:2P_Weibull_Distribution See an Example...]
| valign="middle" |See also [http://reliawiki.com/index.php/Template:Example:2P_Weibull_Distribution Weibull example...]
|}
|}



Revision as of 23:10, 17 February 2012

Webnotesbar.png

Two-Parameter Weibull Distribution

The two-parameter Weibull pdf is obtained by setting [math]\displaystyle{ \gamma=0 \,\! }[/math], and is given by:

[math]\displaystyle{ f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\! }[/math]

See also The Weibull Distribution
See also Weibull example...




Docedit.png