Weibull++ Standard Folio Data 2P-Weibull: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 14: | Line 14: | ||
<math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math> | <math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math> | ||
|- | |- | ||
| valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution] | | valign="middle" | See also [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution] | ||
|- | |- | ||
| valign="middle" |[http://reliawiki.com/index.php/Template:Example:2P_Weibull_Distribution | | valign="middle" |See also [http://reliawiki.com/index.php/Template:Example:2P_Weibull_Distribution Weibull example...] | ||
|} | |} | ||
Revision as of 23:10, 17 February 2012
Two-Parameter Weibull DistributionThe two-parameter Weibull pdf is obtained by setting [math]\displaystyle{ \gamma=0 \,\! }[/math], and is given by: [math]\displaystyle{ f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\! }[/math] |
See also The Weibull Distribution |
See also Weibull example... |