Template:Eyring-log cb on time: Difference between revisions
Jump to navigation
Jump to search
(Created page with '===Confidence Bounds on Time=== <br> The bounds around time for a given lognormal percentile (unreliability) are estimated by first solving the reliability equation with respect…') |
|||
Line 8: | Line 8: | ||
<br> | <br> | ||
where: | |||
<br> | <br> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
{T}'(V;\widehat{A},\widehat{B},{{\widehat{\sigma }}_{{{T}'}}}) &=\ \ln (T) \\ | |||
z &=\ {{\Phi }^{-1}}\left[ F({T}') \right] | |||
\end{align}</math> | \end{align}</math> | ||
<br> | <br> | ||
and: | |||
<br> | <br> | ||
::<math>\Phi (z)=\frac{1}{\sqrt{2\pi }}\ | ::<math>\Phi (z)=\frac{1}{\sqrt{2\pi }}\int_{-\infty }^{z({T}')}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz</math> | ||
<br> | <br> | ||
Line 27: | Line 27: | ||
<br> | <br> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
Var({T}')= & {{\left( \frac{\partial {T}'}{\partial A} \right)}^{2}}Var(\widehat{A})+{{\left( \frac{\partial {T}'}{\partial B} \right)}^{2}}Var(\widehat{B})+{{\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) +2\left( \frac{\partial {T}'}{\partial A} \right)\left( \frac{\partial {T}'}{\partial B} \right)Cov\left( \widehat{A},\widehat{B} \right) \\ | |||
& +2\left( \frac{\partial {T}'}{\partial A} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{A},{{\widehat{\sigma }}_{{{T}'}}} \right) +2\left( \frac{\partial {T}'}{\partial B} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) | |||
\end{align}</math> | \end{align}</math> | ||
<br> | <br> | ||
or: | |||
<br> | <br> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& Var({T}')= | & Var({T}')= Var(\widehat{A})+\frac{1}{V}Var(\widehat{B})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) -\frac{2}{V}Cov\left( \widehat{A},\widehat{B} \right) -2\widehat{z}Cov\left( \widehat{A},{{\widehat{\sigma }}_{{{T}'}}} \right) +\frac{2\widehat{z}}{V}Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) | ||
\end{align}</math> | \end{align}</math> | ||
Revision as of 00:42, 15 February 2012
Confidence Bounds on Time
The bounds around time for a given lognormal percentile (unreliability) are estimated by first solving the reliability equation with respect to time as follows:
- [math]\displaystyle{ {T}'(V;\widehat{A},\widehat{B},{{\widehat{\sigma }}_{{{T}'}}})=-\ln (V)-\widehat{A}+\frac{\widehat{B}}{V}+z\cdot {{\widehat{\sigma }}_{{{T}'}}} }[/math]
where:
- [math]\displaystyle{ \begin{align} {T}'(V;\widehat{A},\widehat{B},{{\widehat{\sigma }}_{{{T}'}}}) &=\ \ln (T) \\ z &=\ {{\Phi }^{-1}}\left[ F({T}') \right] \end{align} }[/math]
and:
- [math]\displaystyle{ \Phi (z)=\frac{1}{\sqrt{2\pi }}\int_{-\infty }^{z({T}')}{{e}^{-\tfrac{1}{2}{{z}^{2}}}}dz }[/math]
The next step is to calculate the variance of [math]\displaystyle{ {T}'(V;\widehat{A},\widehat{B},{{\widehat{\sigma }}_{{{T}'}}}): }[/math]
- [math]\displaystyle{ \begin{align} Var({T}')= & {{\left( \frac{\partial {T}'}{\partial A} \right)}^{2}}Var(\widehat{A})+{{\left( \frac{\partial {T}'}{\partial B} \right)}^{2}}Var(\widehat{B})+{{\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) +2\left( \frac{\partial {T}'}{\partial A} \right)\left( \frac{\partial {T}'}{\partial B} \right)Cov\left( \widehat{A},\widehat{B} \right) \\ & +2\left( \frac{\partial {T}'}{\partial A} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{A},{{\widehat{\sigma }}_{{{T}'}}} \right) +2\left( \frac{\partial {T}'}{\partial B} \right)\left( \frac{\partial {T}'}{\partial {{\sigma }_{{{T}'}}}} \right)Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) \end{align} }[/math]
or:
- [math]\displaystyle{ \begin{align} & Var({T}')= Var(\widehat{A})+\frac{1}{V}Var(\widehat{B})+{{\widehat{z}}^{2}}Var({{\widehat{\sigma }}_{{{T}'}}}) -\frac{2}{V}Cov\left( \widehat{A},\widehat{B} \right) -2\widehat{z}Cov\left( \widehat{A},{{\widehat{\sigma }}_{{{T}'}}} \right) +\frac{2\widehat{z}}{V}Cov\left( \widehat{B},{{\widehat{\sigma }}_{{{T}'}}} \right) \end{align} }[/math]
The upper and lower bounds are then found by:
- [math]\displaystyle{ \begin{align} & T_{U}^{\prime }= & \ln {{T}_{U}}={T}'+{{K}_{\alpha }}\sqrt{Var({T}')} \\ & T_{L}^{\prime }= & \ln {{T}_{L}}={T}'-{{K}_{\alpha }}\sqrt{Var({T}')} \end{align} }[/math]
Solving for [math]\displaystyle{ {{T}_{U}} }[/math] and [math]\displaystyle{ {{T}_{L}} }[/math] yields:
- [math]\displaystyle{ \begin{align} & {{T}_{U}}= & {{e}^{T_{U}^{\prime }}}\text{ (Upper bound)} \\ & {{T}_{L}}= & {{e}^{T_{L}^{\prime }}}\text{ (Lower bound)} \end{align} }[/math]