Template:Logistic reliability function: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 1: | Line 1: | ||
==The Logistic Reliability Function== | ==The Logistic Reliability Function== | ||
The reliability for a mission of time <math> | The reliability for a mission of time <math>t</math> , starting at age 0, for the logistic distribution is determined by: | ||
::<math>R( | ::<math>R(t)=\int_{t}^{\infty }f(t)dt</math> | ||
or: | |||
::<math>R( | ::<math>R(t)=\frac{1}{1+{{e}^{z}}}</math> | ||
The unreliability function is: | The unreliability function is: | ||
Line 12: | Line 12: | ||
::<math>F=\frac{{{e}^{z}}}{1+{{e}^{z}}}</math> | ::<math>F=\frac{{{e}^{z}}}{1+{{e}^{z}}}</math> | ||
where: | |||
::<math>z=\frac{ | ::<math>z=\frac{t-\mu }{\sigma }</math> |
Revision as of 23:01, 14 February 2012
The Logistic Reliability Function
The reliability for a mission of time [math]\displaystyle{ t }[/math] , starting at age 0, for the logistic distribution is determined by:
- [math]\displaystyle{ R(t)=\int_{t}^{\infty }f(t)dt }[/math]
or:
- [math]\displaystyle{ R(t)=\frac{1}{1+{{e}^{z}}} }[/math]
The unreliability function is:
- [math]\displaystyle{ F=\frac{{{e}^{z}}}{1+{{e}^{z}}} }[/math]
where:
- [math]\displaystyle{ z=\frac{t-\mu }{\sigma } }[/math]