Template:Mixed weibull regression solution: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
Weibull++ utilizes a modified Levenberg-Marquardt algorithm (non-linear regression) when performing regression analysis on a mixed Weibull distribution. The procedure is rather involved and is beyond the scope of this reference. It is sufficient to say that the algorithm fits a curved line of the form:  
Weibull++ utilizes a modified Levenberg-Marquardt algorithm (non-linear regression) when performing regression analysis on a mixed Weibull distribution. The procedure is rather involved and is beyond the scope of this reference. It is sufficient to say that the algorithm fits a curved line of the form:  


::<math>{{R}_{1,...,S}}(T)=\underset{i=1}{\overset{S}{\mathop \sum }}\,{{\rho }_{i}}\cdot {{e}^{-{{\left( \tfrac{T}{{{\eta }_{i}}} \right)}^{{{\beta }_{i}}}}}}</math>
::<math>{{R}_{1,...,S}}(t)=\underset{i=1}{\overset{S}{\mathop \sum }}\,{{\rho }_{i}}\cdot {{e}^{-{{\left( \tfrac{t}{{{\eta }_{i}}} \right)}^{{{\beta }_{i}}}}}}</math>
:where:  
where:  


::<math>\underset{i=1}{\overset{S}{\mathop \sum }}\,{{\rho }_{i}}=1</math>
::<math>\underset{i=1}{\overset{S}{\mathop \sum }}\,{{\rho }_{i}}=1</math>


to the parameters  <math>\widehat{{{\rho }_{1,\text{ }}}}</math>  <math>\widehat{{{\beta }_{1}}},</math>  <math>\widehat{{{\eta }_{1}}},</math>  <math>\widehat{{{\rho }_{2,\text{ }}}}\widehat{{{\beta }_{2}}},</math>  <math>\widehat{{{\eta }_{2}}},...,</math>  <math>\widehat{{{\rho }_{S,}}\text{ }}\widehat{{{\beta }_{S}}},</math>  <math>\widehat{{{\eta }_{S}}},</math>  utilizing the times-to-failure and their respective plotting positions.  It is important to note that in the case of regression analysis, using a mixed Weibull model, the choice of regression axis, i.e.  <math>RRX</math>  or  <math>RRY,</math>  is of no consequence since non-linear regression is utilized.
to the parameters  <math>\widehat{{{\rho }_{1,\text{ }}}}</math>  <math>\widehat{{{\beta }_{1}}},</math>  <math>\widehat{{{\eta }_{1}}},</math>  <math>\widehat{{{\rho }_{2,\text{ }}}}\widehat{{{\beta }_{2}}},</math>  <math>\widehat{{{\eta }_{2}}},...,</math>  <math>\widehat{{{\rho }_{S,}}\text{ }}\widehat{{{\beta }_{S}}},</math>  <math>\widehat{{{\eta }_{S}}},</math>  utilizing the times-to-failure and their respective plotting positions.  It is important to note that in the case of regression analysis, using a mixed Weibull model, the choice of regression axis, i.e.  <math>RRX</math>  or  <math>RRY,</math>  is of no consequence since non-linear regression is utilized.

Revision as of 18:12, 14 February 2012

Regression Solution

Weibull++ utilizes a modified Levenberg-Marquardt algorithm (non-linear regression) when performing regression analysis on a mixed Weibull distribution. The procedure is rather involved and is beyond the scope of this reference. It is sufficient to say that the algorithm fits a curved line of the form:

[math]\displaystyle{ {{R}_{1,...,S}}(t)=\underset{i=1}{\overset{S}{\mathop \sum }}\,{{\rho }_{i}}\cdot {{e}^{-{{\left( \tfrac{t}{{{\eta }_{i}}} \right)}^{{{\beta }_{i}}}}}} }[/math]

where:

[math]\displaystyle{ \underset{i=1}{\overset{S}{\mathop \sum }}\,{{\rho }_{i}}=1 }[/math]

to the parameters [math]\displaystyle{ \widehat{{{\rho }_{1,\text{ }}}} }[/math] [math]\displaystyle{ \widehat{{{\beta }_{1}}}, }[/math] [math]\displaystyle{ \widehat{{{\eta }_{1}}}, }[/math] [math]\displaystyle{ \widehat{{{\rho }_{2,\text{ }}}}\widehat{{{\beta }_{2}}}, }[/math] [math]\displaystyle{ \widehat{{{\eta }_{2}}},..., }[/math] [math]\displaystyle{ \widehat{{{\rho }_{S,}}\text{ }}\widehat{{{\beta }_{S}}}, }[/math] [math]\displaystyle{ \widehat{{{\eta }_{S}}}, }[/math] utilizing the times-to-failure and their respective plotting positions. It is important to note that in the case of regression analysis, using a mixed Weibull model, the choice of regression axis, i.e. [math]\displaystyle{ RRX }[/math] or [math]\displaystyle{ RRY, }[/math] is of no consequence since non-linear regression is utilized.