Template:Gll exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '====GLL Exponential==== <br> The GLL-exponential model can be derived by setting <math>m=L(\underline{X})</math> in Eqn. (GLL1), yielding the following GLL-exponential <math>p…')
 
No edit summary
Line 4: Line 4:


<br>
<br>
::<math>f(t,\underline{X})={{e}^{-\left( {{\alpha }_{0}}+\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}} \right)}}{{e}^{-\left( {{\alpha }_{0}}+\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}} \right)\cdot t}}</math>
<math>f(t,\underline{X})={{e}^{-\left( {{\alpha }_{0}}+\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}} \right)}}{{e}^{-\left( {{\alpha }_{0}}+\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}} \right)\cdot t}}</math>


<br>
<br>
The total number of unknowns to solve for in this model is  <math>n+1</math>  (i.e.  <math>{{a}_{0}},{{a}_{1}},...{{a}_{n}}).</math>  
The total number of unknowns to solve for in this model is  <math>n+1</math>  (i.e.  <math>{{a}_{0}},{{a}_{1}},...{{a}_{n}}).</math>  
<br>
<br>

Revision as of 18:01, 14 February 2012

GLL Exponential


The GLL-exponential model can be derived by setting [math]\displaystyle{ m=L(\underline{X}) }[/math] in Eqn. (GLL1), yielding the following GLL-exponential [math]\displaystyle{ pdf }[/math] :


[math]\displaystyle{ f(t,\underline{X})={{e}^{-\left( {{\alpha }_{0}}+\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}} \right)}}{{e}^{-\left( {{\alpha }_{0}}+\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}} \right)\cdot t}} }[/math]


The total number of unknowns to solve for in this model is [math]\displaystyle{ n+1 }[/math] (i.e. [math]\displaystyle{ {{a}_{0}},{{a}_{1}},...{{a}_{n}}). }[/math]