Template:Gll lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '====GLL Lognormal==== <br> The GLL-lognormal model can be derived by setting <math>\breve{T}=L(\underline{X})</math> in Eqn. (GLL1), yielding the following GLL-lognormal <math…')
 
No edit summary
Line 5: Line 5:


<br>
<br>
::<math>f(t,\underline{X})=\frac{1}{t\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-{{\alpha }_{0}}-\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
<math>f(t,\underline{X})=\frac{1}{t\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-{{\alpha }_{0}}-\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>


<br>
<br>
The total number of unknowns to solve for in this model is  <math>n+2</math>  (i.e.  <math>{{\sigma }_{{{T}'}}},{{a}_{0}},{{a}_{1}},...{{a}_{n}}).</math>  
The total number of unknowns to solve for in this model is  <math>n+2</math>  (i.e.  <math>{{\sigma }_{{{T}'}}},{{a}_{0}},{{a}_{1}},...{{a}_{n}}).</math>  
<br>
<br>

Revision as of 17:59, 14 February 2012

GLL Lognormal


The GLL-lognormal model can be derived by setting [math]\displaystyle{ \breve{T}=L(\underline{X}) }[/math] in Eqn. (GLL1), yielding the following GLL-lognormal [math]\displaystyle{ pdf }[/math] :


[math]\displaystyle{ f(t,\underline{X})=\frac{1}{t\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-{{\alpha }_{0}}-\underset{j=1}{\overset{n}{\mathop{\sum }}}\,{{\alpha }_{j}}{{X}_{j}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]


The total number of unknowns to solve for in this model is [math]\displaystyle{ n+2 }[/math] (i.e. [math]\displaystyle{ {{\sigma }_{{{T}'}}},{{a}_{0}},{{a}_{1}},...{{a}_{n}}). }[/math]