ALTA ALTA Standard Folio Data Arrhenius-Lognormal: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
|- | |- | ||
| valign="middle" | | | valign="middle" | | ||
The Arrhenius-lognormal model <math>pdf</math> can be obtained first by setting <math>\breve{T}=L(V)</math> in Eqn. (arrhenius). Therefore: | The Arrhenius-lognormal model <math>pdf</math> can be obtained first by setting <math>\breve{T}=L(V)</math> in Eqn. (arrhenius). Therefore: | ||
Line 53: | Line 26: | ||
Substituting Eqn. (arrh-logn-mean) into Eqn. (arrh-logn-pdf) yields the Arrhenius-lognormal model <math>pdf</math> or: | Substituting Eqn. (arrh-logn-mean) into Eqn. (arrh-logn-pdf) yields the Arrhenius-lognormal model <math>pdf</math> or: | ||
<math>f(T,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\ln (C)-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math> | |||
|- | |- | ||
| valign="middle" | [http://reliawiki.com/index.php/Template:Alta_al#Arrhenius-Lognormal Get More Details...] | | valign="middle" | [http://reliawiki.com/index.php/Template:Alta_al#Arrhenius-Lognormal Get More Details...] |
Revision as of 17:30, 14 February 2012
Standard Folio Data Arrhenius-Lognormal |
ALTA |
The Arrhenius-lognormal model [math]\displaystyle{ pdf }[/math] can be obtained first by setting [math]\displaystyle{ \breve{T}=L(V) }[/math] in Eqn. (arrhenius). Therefore: [math]\displaystyle{ \breve{T}=L(V)=C{{e}^{\tfrac{B}{V}}} }[/math] or: [math]\displaystyle{ {{e}^{{{\overline{T}}^{\prime }}}}=C{{e}^{\tfrac{B}{V}}} }[/math] Thus: [math]\displaystyle{ {{\overline{T}}^{\prime }}=\ln (C)+\frac{B}{V} }[/math]
[math]\displaystyle{ f(T,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\ln (C)-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math] |
Get More Details... |