Template:Aaw mle: Difference between revisions
Line 53: | Line 53: | ||
<br> | <br> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
\frac{\partial \Lambda }{\partial \beta }=\ & \frac{1}{\beta }\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}+\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\ln \left( \frac{{{T}_{i}}}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right) -\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}{{\left( \frac{{{T}_{i}}}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }}\ln \left( \frac{{{T}_{i}}}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right) -\underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }{{\left( \frac{T_{i}^{\prime }}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }}\ln \left( \frac{T_{i}^{\prime }}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right) \\ | |||
& \overset{FI}{\mathop{\underset{i=1}{\mathop{-\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{{{\left( \tfrac{T_{Li}^{\prime \prime }}{C{{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }}\ln \left( \tfrac{T_{Li}^{\prime \prime }}{C{{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)R_{Li}^{\prime \prime }-{{\left( \tfrac{T_{Ri}^{\prime \prime }}{C{{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }}\ln \left( \tfrac{T_{Ri}^{\prime \prime }}{C{{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)R_{Ri}^{\prime \prime }}{R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }} | |||
\end{align}</math> | \end{align}</math> | ||
Line 63: | Line 61: | ||
<br> | <br> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& \frac{\partial \Lambda }{\partial B}= & -\beta \underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\frac{1}{{{V}_{i}}}+\beta \underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\frac{1}{{{V}_{i}}}{{\left( \frac{{{T}_{i}}}{\widehat{C}{{e}^{\tfrac{\widehat{B}}{{{V}_{i}}}}}} \right)}^{\beta }}+\beta \underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }\frac{1}{{{V}_{i}}}{{\left( \frac{T_{i}^{\prime }}{\widehat{C}{{e}^{\tfrac{\widehat{B}}{{{V}_{i}}}}}} \right)}^{\beta }} | & \frac{\partial \Lambda }{\partial B}= & -\beta \underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\frac{1}{{{V}_{i}}}+\beta \underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\frac{1}{{{V}_{i}}}{{\left( \frac{{{T}_{i}}}{\widehat{C}{{e}^{\tfrac{\widehat{B}}{{{V}_{i}}}}}} \right)}^{\beta }}+\beta \underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }\frac{1}{{{V}_{i}}}{{\left( \frac{T_{i}^{\prime }}{\widehat{C}{{e}^{\tfrac{\widehat{B}}{{{V}_{i}}}}}} \right)}^{\beta }} +\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{\beta }{{{V}_{i}}}\frac{{{(T_{Li}^{\prime \prime })}^{\beta }}R_{Li}^{\prime \prime }-{{(T_{Ri}^{\prime \prime })}^{\beta }}R_{Ri}^{\prime \prime }}{{{\left( C{{e}^{\tfrac{B}{{{V}_{i}}}}} \right)}^{\beta }}\left( R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime } \right)} | ||
\end{align}</math> | \end{align}</math> | ||
Revision as of 23:46, 13 February 2012
Maximum Likelihood Estimation Method
The Arrhenius-Weibull log-likelihood function is as follows:
- [math]\displaystyle{ \begin{align} & \Lambda = & \underset{i=1}{\overset{{{F}_{e}}}{\mathop \sum }}\,{{N}_{i}}\ln \left[ \frac{\beta }{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}}{{\left( \frac{{{T}_{i}}}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{{{T}_{i}}}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }}}} \right] \ -\underset{i=1}{\overset{S}{\mathop \sum }}\,N_{i}^{\prime }{{\left( \frac{T_{i}^{\prime }}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }}+\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\ln [R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }] \end{align} }[/math]
where:
- [math]\displaystyle{ R_{Li}^{\prime \prime }={{e}^{-{{\left( \tfrac{T_{Li}^{\prime \prime }}{C{{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }}}} }[/math]
- [math]\displaystyle{ R_{Ri}^{\prime \prime }={{e}^{-{{\left( \tfrac{T_{Ri}^{\prime \prime }}{C{{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }}}} }[/math]
and:
• [math]\displaystyle{ {{F}_{e}} }[/math] is the number of groups of exact times-to-failure data points.
• [math]\displaystyle{ {{N}_{i}} }[/math] is the number of times-to-failure data points in the [math]\displaystyle{ {{i}^{th}} }[/math] time-to-failure data group.
• [math]\displaystyle{ \beta }[/math] is the Weibull shape parameter (unknown, the first of three parameters to be estimated).
• [math]\displaystyle{ B }[/math] is the Arrhenius parameter (unknown, the second of three parameters to be estimated).
• [math]\displaystyle{ C }[/math] is the second Arrhenius parameter (unknown, the third of three parameters to be estimated).
• [math]\displaystyle{ {{V}_{i}} }[/math] is the stress level of the [math]\displaystyle{ {{i}^{th}} }[/math] group.
• [math]\displaystyle{ {{T}_{i}} }[/math] is the exact failure time of the [math]\displaystyle{ {{i}^{th}} }[/math] group.
• [math]\displaystyle{ S }[/math] is the number of groups of suspension data points.
• [math]\displaystyle{ N_{i}^{\prime } }[/math] is the number of suspensions in the [math]\displaystyle{ {{i}^{th}} }[/math] group of suspension data points.
• [math]\displaystyle{ T_{i}^{\prime } }[/math] is the running time of the [math]\displaystyle{ {{i}^{th}} }[/math] suspension data group.
• [math]\displaystyle{ FI }[/math] is the number of interval data groups.
• [math]\displaystyle{ N_{i}^{\prime \prime } }[/math] is the number of intervals in the i [math]\displaystyle{ ^{th} }[/math] group of data intervals.
• [math]\displaystyle{ T_{Li}^{\prime \prime } }[/math] is the beginning of the i [math]\displaystyle{ ^{th} }[/math] interval.
• [math]\displaystyle{ T_{Ri}^{\prime \prime } }[/math] is the ending of the i [math]\displaystyle{ ^{th} }[/math] interval.
The solution (parameter estimates) will be found by solving for [math]\displaystyle{ \widehat{\beta }, }[/math] [math]\displaystyle{ \widehat{B}, }[/math] [math]\displaystyle{ \widehat{C} }[/math] so that [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial \beta }=0, }[/math] [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial B}=0 }[/math] and [math]\displaystyle{ \tfrac{\partial \Lambda }{\partial C}=0 }[/math] , where:
- [math]\displaystyle{ \begin{align} \frac{\partial \Lambda }{\partial \beta }=\ & \frac{1}{\beta }\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}+\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\ln \left( \frac{{{T}_{i}}}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right) -\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}{{\left( \frac{{{T}_{i}}}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }}\ln \left( \frac{{{T}_{i}}}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right) -\underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }{{\left( \frac{T_{i}^{\prime }}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }}\ln \left( \frac{T_{i}^{\prime }}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right) \\ & \overset{FI}{\mathop{\underset{i=1}{\mathop{-\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{{{\left( \tfrac{T_{Li}^{\prime \prime }}{C{{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }}\ln \left( \tfrac{T_{Li}^{\prime \prime }}{C{{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)R_{Li}^{\prime \prime }-{{\left( \tfrac{T_{Ri}^{\prime \prime }}{C{{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }}\ln \left( \tfrac{T_{Ri}^{\prime \prime }}{C{{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)R_{Ri}^{\prime \prime }}{R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime }} \end{align} }[/math]
- [math]\displaystyle{ \begin{align} & \frac{\partial \Lambda }{\partial B}= & -\beta \underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\frac{1}{{{V}_{i}}}+\beta \underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}\frac{1}{{{V}_{i}}}{{\left( \frac{{{T}_{i}}}{\widehat{C}{{e}^{\tfrac{\widehat{B}}{{{V}_{i}}}}}} \right)}^{\beta }}+\beta \underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }\frac{1}{{{V}_{i}}}{{\left( \frac{T_{i}^{\prime }}{\widehat{C}{{e}^{\tfrac{\widehat{B}}{{{V}_{i}}}}}} \right)}^{\beta }} +\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{\beta }{{{V}_{i}}}\frac{{{(T_{Li}^{\prime \prime })}^{\beta }}R_{Li}^{\prime \prime }-{{(T_{Ri}^{\prime \prime })}^{\beta }}R_{Ri}^{\prime \prime }}{{{\left( C{{e}^{\tfrac{B}{{{V}_{i}}}}} \right)}^{\beta }}\left( R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime } \right)} \end{align} }[/math]
- [math]\displaystyle{ \begin{align} & \frac{\partial \Lambda }{\partial C}= & -\frac{\beta }{C}\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}+\frac{\beta }{C}\underset{i=1}{\overset{{{F}_{e}}}{\mathop{\sum }}}\,{{N}_{i}}{{\left( \frac{{{T}_{i}}}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }}+\frac{\beta }{C}\underset{i=1}{\overset{S}{\mathop{\sum }}}\,N_{i}^{\prime }{{\left( \frac{T_{i}^{\prime }}{C\cdot {{e}^{\tfrac{B}{{{V}_{i}}}}}} \right)}^{\beta }} \\ & & +\overset{FI}{\mathop{\underset{i=1}{\mathop{\underset{}{\overset{}{\mathop \sum }}\,}}\,}}\,N_{i}^{\prime \prime }\frac{\beta }{C}\frac{{{(T_{Li}^{\prime \prime })}^{\beta }}R_{Li}^{\prime \prime }-{{(T_{Ri}^{\prime \prime })}^{\beta }}R_{Ri}^{\prime \prime }}{{{\left( C{{e}^{\tfrac{B}{{{V}_{i}}}}} \right)}^{\beta }}\left( R_{Li}^{\prime \prime }-R_{Ri}^{\prime \prime } \right)} \end{align} }[/math]