Template:Example: Lognormal General Example Complete Data: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 33: | Line 33: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | ||
& | & {\hat{\sigma '}}= & 1.10 | ||
\end{align}</math> | \end{align}</math> | ||
Revision as of 23:45, 13 February 2012
Lognormal Distribution General Example Complete Data
Determine the lognormal parameter estimates for the data given in Table 9.4.
Table 9.4 - Non-Grouped Times-to-Failure Data | ||
Data point index | State F or S | State End Time |
---|---|---|
1 | F | 2 |
2 | F | 5 |
3 | F | 11 |
4 | F | 23 |
5 | F | 29 |
6 | F | 37 |
7 | F | 43 |
8 | F | 59 |
Solution
Using Weibull++, the computed parameters for maximum likelihood are:
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ & {\hat{\sigma '}}= & 1.10 \end{align} }[/math]
For rank regression on [math]\displaystyle{ X\ \ : }[/math]
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ & {{{\hat{\sigma' }}}}= & 1.24 \end{align} }[/math]
For rank regression on [math]\displaystyle{ Y\ \ : }[/math]
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ & {{{\hat{\sigma' }}}}= & 1.36 \end{align} }[/math]