Template:Example: Lognormal General Example Interval Data: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with ''''Lognormal Distribution General Example Interval Data''' Determine the lognormal parameter estimates for the data given in Table below. {|align="center" border=1 cellspacing=1…')
 
No edit summary
Line 4: Line 4:
{|align="center" border=1 cellspacing=1  
{|align="center" border=1 cellspacing=1  
|-
|-
|colspan="3" style="text-align:center"| Table - Non-Grouped Data Times-to-Failure with intervals (lnterval and left censored)
|colspan="3" style="text-align:center"| Table 9.3- Non-Grouped Data Times-to-Failure with intervals (lnterval and left censored)
|-  
|-  
!Data point index
!Data point index
Line 33: Line 33:
::<math>\begin{align}
::<math>\begin{align}
   & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\  
   & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\  
  & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.18   
  & {{{\hat{\sigma' }}}}= & 0.18   
\end{align}</math>
\end{align}</math>


Line 41: Line 41:
::<math>\begin{align}
::<math>\begin{align}
   & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\  
   & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\  
  & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.17   
  & {{{\hat{\sigma' }}}}= & 0.17   
\end{align}</math>
\end{align}</math>


Line 49: Line 49:
::<math>\begin{align}
::<math>\begin{align}
   & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\  
   & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\  
  & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.21   
  & {{{\hat{\sigma' }}}}= & 0.21   
\end{align}</math>
\end{align}</math>

Revision as of 23:42, 13 February 2012

Lognormal Distribution General Example Interval Data

Determine the lognormal parameter estimates for the data given in Table below.

Table 9.3- Non-Grouped Data Times-to-Failure with intervals (lnterval and left censored)
Data point index Last Inspected State End Time
1 30 32
2 32 35
3 35 37
4 37 40
5 42 42
6 45 45
7 50 50
8 55 55

Solution

This is a sequence of interval times-to-failure where the intervals vary substantially in length. Using Weibull++, the computed parameters for maximum likelihood are calculated to be:

[math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ & {{{\hat{\sigma' }}}}= & 0.18 \end{align} }[/math]


For rank regression on [math]\displaystyle{ X\ \ : }[/math]

[math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ & {{{\hat{\sigma' }}}}= & 0.17 \end{align} }[/math]


For rank regression on [math]\displaystyle{ Y\ \ : }[/math]

[math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 3.64 \\ & {{{\hat{\sigma' }}}}= & 0.21 \end{align} }[/math]