Template:Example: Lognormal Distribution RRY: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
{|align="center" border=1 cellspacing=0 | {|align="center" border=1 cellspacing=0 | ||
|- | |- | ||
|colspan="2" style="text-align:center"| Table 9.1 - Life Test Data | |colspan="2" style="text-align:center"| Table 9.1 - Life Test Data | ||
|- | |- | ||
!Data point index | !Data point index | ||
Line 48: | Line 48: | ||
<center><math>\begin{matrix} | <center><math>\begin{matrix} | ||
N & | N & t_{i} & F(t_{i}) & {t_{i}}'& y_{i} & {{t_{i}}'}^{2} & y_{i}^{2} & t_{i} y_{i} \\ | ||
\text{1} & \text{5} & \text{0}\text{.0483} & \text{1}\text{.6094}& \text{-1}\text{.6619} & \text{2}\text{.5903} & \text{2}\text{.7619} & \text{-2}\text{.6747} \\ | \text{1} & \text{5} & \text{0}\text{.0483} & \text{1}\text{.6094}& \text{-1}\text{.6619} & \text{2}\text{.5903} & \text{2}\text{.7619} & \text{-2}\text{.6747} \\ | ||
\text{2} & \text{10} & \text{0}\text{.1170} & \text{2.3026}& \text{-1.1901} & \text{5.3019} & \text{1.4163} & \text{-2.7403} \\ | \text{2} & \text{10} & \text{0}\text{.1170} & \text{2.3026}& \text{-1.1901} & \text{5.3019} & \text{1.4163} & \text{-2.7403} \\ | ||
Line 68: | Line 68: | ||
The median rank values ( <math>F({{ | The median rank values ( <math>F({{t}_{i}})</math> ) can be found in rank tables or by using the Quick Statistical Reference in Weibull++ . | ||
The <math>{{y}_{i}}</math> values were obtained from the standardized normal distribution's area tables by entering for <math>F(z)</math> and getting the corresponding <math>z</math> value ( <math>{{y}_{i}}</math> ). | The <math>{{y}_{i}}</math> values were obtained from the standardized normal distribution's area tables by entering for <math>F(z)</math> and getting the corresponding <math>z</math> value ( <math>{{y}_{i}}</math> ). | ||
Given the values in the table above, calculate <math>\widehat{a}</math> and <math>\widehat{b}</math> | Given the values in the table above, calculate <math>\widehat{a}</math> and <math>\widehat{b}</math>: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& \widehat{b}= & \frac{\underset{i=1}{\overset{14}{\mathop{\sum }}}\, | & \widehat{b}= & \frac{\underset{i=1}{\overset{14}{\mathop{\sum }}}\,t_{i}^{\prime }{{y}_{i}}-(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,t_{i}^{\prime })(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{y}_{i}})/14}{\underset{i=1}{\overset{14}{\mathop{\sum }}}\,t_{i}^{\prime 2}-{{(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,t_{i}^{\prime })}^{2}}/14} \\ | ||
& & \\ | & & \\ | ||
& \widehat{b}= & \frac{10.4473-(49.2220)(0)/14}{183.1530-{{(49.2220)}^{2}}/14} | & \widehat{b}= & \frac{10.4473-(49.2220)(0)/14}{183.1530-{{(49.2220)}^{2}}/14} | ||
Line 87: | Line 87: | ||
and: | and: | ||
::<math>\widehat{a}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}-\widehat{b}\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\, | ::<math>\widehat{a}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}-\widehat{b}\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,t_{i}^{\prime }}{N}</math> | ||
or: | or: | ||
Line 93: | Line 93: | ||
::<math>\widehat{a}=\frac{0}{14}-(1.0349)\frac{49.2220}{14}=-3.6386</math> | ::<math>\widehat{a}=\frac{0}{14}-(1.0349)\frac{49.2220}{14}=-3.6386</math> | ||
:Therefore | :Therefore: | ||
::<math> | ::<math>{\sigma'}=\frac{1}{\widehat{b}}=\frac{1}{1.0349}=0.9663</math> | ||
and: | |||
::<math>{\mu }'=-\widehat{a}\cdot | ::<math>{\mu }'=-\widehat{a}\cdot {\sigma'}=-(-3.6386)\cdot 0.9663</math> | ||
or: | or: | ||
Line 105: | Line 105: | ||
::<math>{\mu }'=3.516</math> | ::<math>{\mu }'=3.516</math> | ||
The mean and the standard deviation of the lognormal distribution are obtained using | The mean and the standard deviation of the lognormal distribution are obtained using equations in section [[Lognormal Statistical Properties]]: | ||
::<math>\overline{T}=\mu ={{e}^{3.516+\tfrac{1}{2}{{0.9663}^{2}}}}=53.6707\text{ hours}</math> | ::<math>\overline{T}=\mu ={{e}^{3.516+\tfrac{1}{2}{{0.9663}^{2}}}}=53.6707\text{ hours}</math> |
Revision as of 21:11, 13 February 2012
Lognormal Distribution RRY Example
Fourteen units were reliability tested and the following life test data were obtained:
Table 9.1 - Life Test Data | |
Data point index | Time-to-failure |
---|---|
1 | 5 |
2 | 10 |
3 | 15 |
4 | 20 |
5 | 25 |
6 | 30 |
7 | 35 |
8 | 40 |
9 | 50 |
10 | 60 |
11 | 70 |
12 | 80 |
13 | 90 |
14 | 100 |
Assuming the data follow a lognormal distribution, estimate the parameters and the correlation coefficient, [math]\displaystyle{ \rho }[/math] , using rank regression on Y.
Solution
Construct Table 9.2, as shown next.
The median rank values ( [math]\displaystyle{ F({{t}_{i}}) }[/math] ) can be found in rank tables or by using the Quick Statistical Reference in Weibull++ .
The [math]\displaystyle{ {{y}_{i}} }[/math] values were obtained from the standardized normal distribution's area tables by entering for [math]\displaystyle{ F(z) }[/math] and getting the corresponding [math]\displaystyle{ z }[/math] value ( [math]\displaystyle{ {{y}_{i}} }[/math] ).
Given the values in the table above, calculate [math]\displaystyle{ \widehat{a} }[/math] and [math]\displaystyle{ \widehat{b} }[/math]:
- [math]\displaystyle{ \begin{align} & \widehat{b}= & \frac{\underset{i=1}{\overset{14}{\mathop{\sum }}}\,t_{i}^{\prime }{{y}_{i}}-(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,t_{i}^{\prime })(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{y}_{i}})/14}{\underset{i=1}{\overset{14}{\mathop{\sum }}}\,t_{i}^{\prime 2}-{{(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,t_{i}^{\prime })}^{2}}/14} \\ & & \\ & \widehat{b}= & \frac{10.4473-(49.2220)(0)/14}{183.1530-{{(49.2220)}^{2}}/14} \end{align} }[/math]
or:
- [math]\displaystyle{ \widehat{b}=1.0349 }[/math]
and:
- [math]\displaystyle{ \widehat{a}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}-\widehat{b}\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,t_{i}^{\prime }}{N} }[/math]
or:
- [math]\displaystyle{ \widehat{a}=\frac{0}{14}-(1.0349)\frac{49.2220}{14}=-3.6386 }[/math]
- Therefore:
- [math]\displaystyle{ {\sigma'}=\frac{1}{\widehat{b}}=\frac{1}{1.0349}=0.9663 }[/math]
and:
- [math]\displaystyle{ {\mu }'=-\widehat{a}\cdot {\sigma'}=-(-3.6386)\cdot 0.9663 }[/math]
or:
- [math]\displaystyle{ {\mu }'=3.516 }[/math]
The mean and the standard deviation of the lognormal distribution are obtained using equations in section Lognormal Statistical Properties:
- [math]\displaystyle{ \overline{T}=\mu ={{e}^{3.516+\tfrac{1}{2}{{0.9663}^{2}}}}=53.6707\text{ hours} }[/math]
and:
- [math]\displaystyle{ {{\sigma }_{T}}=\sqrt{({{e}^{2\cdot 3.516+{{0.9663}^{2}}}})({{e}^{{{0.9663}^{2}}}}-1)}=66.69\text{ hours} }[/math]
The correlation coefficient can be estimated using Eqn. (RHOln):
- [math]\displaystyle{ \widehat{\rho }=0.9754 }[/math]
The above example can be repeated using Weibull++ , using RRY.
The mean can be obtained from the QCP and both the mean and the standard deviation can be obtained from the Function Wizard.