Template:Lognormal distribution mean: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 5: Line 5:




The mean of the natural logarithms of the times-to-failure, <math>\mu'</math> , in terms of  <math>\bar{T}</math>  and  <math>{{\sigma'}}</math>  is givgen by:  
The mean of the natural logarithms of the times-to-failure, <math>\mu'</math> , in terms of  <math>\bar{T}</math>  and  <math>{{\sigma}}</math>  is givgen by:  


::<math>{\mu }'=\ln \left( {\bar{T}} \right)-\frac{1}{2}\ln \left( \frac{\sigma'^{2}}{{{{\bar{T}}}^{2}}}+1 \right)</math>
::<math>{\mu }'=\ln \left( {\bar{T}} \right)-\frac{1}{2}\ln \left( \frac{\sigma^{2}}{{{{\bar{T}}}^{2}}}+1 \right)</math>

Revision as of 20:55, 13 February 2012

The Mean or MTTF

The mean of the lognormal distribution, [math]\displaystyle{ \mu }[/math] , is given by [18]:

[math]\displaystyle{ \mu ={{e}^{{\mu }'+\tfrac{1}{2}\sigma'^{2}}} }[/math]


The mean of the natural logarithms of the times-to-failure, [math]\displaystyle{ \mu' }[/math] , in terms of [math]\displaystyle{ \bar{T} }[/math] and [math]\displaystyle{ {{\sigma}} }[/math] is givgen by:

[math]\displaystyle{ {\mu }'=\ln \left( {\bar{T}} \right)-\frac{1}{2}\ln \left( \frac{\sigma^{2}}{{{{\bar{T}}}^{2}}}+1 \right) }[/math]