Template:Lognormal distribution standard deviation: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 2: Line 2:
The standard deviation of the lognormal distribution,  <math>{{\sigma }}</math> , is given by [[Appendix: Weibull References|[18]]]:  
The standard deviation of the lognormal distribution,  <math>{{\sigma }}</math> , is given by [[Appendix: Weibull References|[18]]]:  


::<math>{{\sigma}}=\sqrt{\left( {{e}^{2{\mu }'+{\sigma'}^{2}}} \right)\left( {{e}^{\sigma'}^{2}}}-1 \right)}</math>
::<math>\sigma =\sqrt{\left( {{e}^{2\mu '+\sigma {{'}^{2}}}} \right)-\left( {{e}^{\sigma {{'}^{2}}}}-1 \right)}</math>




The standard deviation of the natural logarithms of the times-to-failure,  <math>{{\sigma'}</math> , in terms of  <math>\bar{T}</math>  and  <math>{{\sigma}</math>  is given by:  
The standard deviation of the natural logarithms of the times-to-failure,  <math>{{\sigma}'</math> , in terms of  <math>\bar{T}</math>  and  <math>{{\sigma}</math>  is given by:  


::<math>\{sigma'}=\sqrt{\ln \left( \frac{\sigma^{2}}{{{{\bar{T}}}^{2}}}+1 \right)}</math>
::<math>\sigma '=\sqrt{\ln \left( \frac{{{\sigma }^{2}}}{{{{\bar{T}}}^{2}}}+1 \right)}</math>

Revision as of 16:52, 13 February 2012

The Standard Deviation

The standard deviation of the lognormal distribution, [math]\displaystyle{ {{\sigma }} }[/math] , is given by [18]:

[math]\displaystyle{ \sigma =\sqrt{\left( {{e}^{2\mu '+\sigma {{'}^{2}}}} \right)-\left( {{e}^{\sigma {{'}^{2}}}}-1 \right)} }[/math]


The standard deviation of the natural logarithms of the times-to-failure, [math]\displaystyle{ {{\sigma}' }[/math] , in terms of [math]\displaystyle{ \bar{T} }[/math] and [math]\displaystyle{ {{\sigma} }[/math] is given by:

[math]\displaystyle{ \sigma '=\sqrt{\ln \left( \frac{{{\sigma }^{2}}}{{{{\bar{T}}}^{2}}}+1 \right)} }[/math]