Template:Lognormal distribution standard deviation: Difference between revisions
Jump to navigation
Jump to search
Line 2: | Line 2: | ||
The standard deviation of the lognormal distribution, <math>{{\sigma }}</math> , is given by [[Appendix: Weibull References|[18]]]: | The standard deviation of the lognormal distribution, <math>{{\sigma }}</math> , is given by [[Appendix: Weibull References|[18]]]: | ||
::<math> | ::<math>\sigma =\sqrt{\left( {{e}^{2\mu '+\sigma {{'}^{2}}}} \right)-\left( {{e}^{\sigma {{'}^{2}}}}-1 \right)}</math> | ||
The standard deviation of the natural logarithms of the times-to-failure, <math>{{\sigma' | The standard deviation of the natural logarithms of the times-to-failure, <math>{{\sigma}'</math> , in terms of <math>\bar{T}</math> and <math>{{\sigma}</math> is given by: | ||
::<math>\ | ::<math>\sigma '=\sqrt{\ln \left( \frac{{{\sigma }^{2}}}{{{{\bar{T}}}^{2}}}+1 \right)}</math> |
Revision as of 16:52, 13 February 2012
The Standard Deviation
The standard deviation of the lognormal distribution, [math]\displaystyle{ {{\sigma }} }[/math] , is given by [18]:
- [math]\displaystyle{ \sigma =\sqrt{\left( {{e}^{2\mu '+\sigma {{'}^{2}}}} \right)-\left( {{e}^{\sigma {{'}^{2}}}}-1 \right)} }[/math]
The standard deviation of the natural logarithms of the times-to-failure, [math]\displaystyle{ {{\sigma}' }[/math] , in terms of [math]\displaystyle{ \bar{T} }[/math] and [math]\displaystyle{ {{\sigma} }[/math] is given by:
- [math]\displaystyle{ \sigma '=\sqrt{\ln \left( \frac{{{\sigma }^{2}}}{{{{\bar{T}}}^{2}}}+1 \right)} }[/math]