Template:Lognormal distribution mean: Difference between revisions
Jump to navigation
Jump to search
Line 5: | Line 5: | ||
The mean of the natural logarithms of the times-to-failure, <math>\mu'</math> , in terms of <math>\bar{T}</math> and <math>{{\sigma }}</math> is givgen by: | The mean of the natural logarithms of the times-to-failure, <math>\mu'</math> , in terms of <math>\bar{T}</math> and <math>{{\sigma'}}</math> is givgen by: | ||
::<math>{\mu }'=\ln \left( {\bar{T}} \right)-\frac{1}{2}\ln \left( \frac{\sigma^{2}}{{{{\bar{T}}}^{2}}}+1 \right)</math> | ::<math>{\mu }'=\ln \left( {\bar{T}} \right)-\frac{1}{2}\ln \left( \frac{\sigma'^{2}}{{{{\bar{T}}}^{2}}}+1 \right)</math> |
Revision as of 16:42, 13 February 2012
The Mean or MTTF
The mean of the lognormal distribution, [math]\displaystyle{ \mu }[/math] , is given by [18]:
- [math]\displaystyle{ \mu ={{e}^{{\mu }'+\tfrac{1}{2}\sigma'^{2}}} }[/math]
The mean of the natural logarithms of the times-to-failure, [math]\displaystyle{ \mu' }[/math] , in terms of [math]\displaystyle{ \bar{T} }[/math] and [math]\displaystyle{ {{\sigma'}} }[/math] is givgen by:
- [math]\displaystyle{ {\mu }'=\ln \left( {\bar{T}} \right)-\frac{1}{2}\ln \left( \frac{\sigma'^{2}}{{{{\bar{T}}}^{2}}}+1 \right) }[/math]