Template:Lognormal distribution probability density function: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
::<math>f({t}')=\frac{1}{{{\sigma' }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{t}^{\prime }}-{\mu }'}{{{\sigma' }}} \right)}^{2}}}}</math> | ::<math>f({t}')=\frac{1}{{{\sigma' }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{t}^{\prime }}-{\mu }'}{{{\sigma' }}} \right)}^{2}}}}</math> | ||
where, <math>{t}'=\ln (t)</math>. | where, | ||
:<math>{t}'=\ln (t)</math>. <math>t</math> values are the times-to-failure, and | |||
:<math>\mu'=\text{mean of the natural logarithms of the times-to-failure,}</math> | :<math>\mu'=\text{mean of the natural logarithms of the times-to-failure,}</math> |
Revision as of 16:13, 13 February 2012
Lognormal Probability Density Function
The lognormal distribution is a two-parameter distribution with parameters [math]\displaystyle{ {\mu }' }[/math] and [math]\displaystyle{ \sigma' }[/math] . The [math]\displaystyle{ pdf }[/math] for this distribution is given by:
- [math]\displaystyle{ f({t}')=\frac{1}{{{\sigma' }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{t}^{\prime }}-{\mu }'}{{{\sigma' }}} \right)}^{2}}}} }[/math]
where,
- [math]\displaystyle{ {t}'=\ln (t) }[/math]. [math]\displaystyle{ t }[/math] values are the times-to-failure, and
- [math]\displaystyle{ \mu'=\text{mean of the natural logarithms of the times-to-failure,} }[/math]
- [math]\displaystyle{ \sigma'=\text{standard deviation of the natural logarithms} }[/math]
- [math]\displaystyle{ \text{of the times-to-failure} }[/math]
The lognormal [math]\displaystyle{ pdf }[/math] can be obtained, realizing that for equal probabilities under the normal and lognormal [math]\displaystyle{ pdf }[/math] s, incremental areas should also be equal, or:
- [math]\displaystyle{ f(t)dt=f({t}')d{t}' }[/math]
Taking the derivative yields:
- [math]\displaystyle{ d{t}'=\frac{dt}{t} }[/math]
- Substitution yields:
- [math]\displaystyle{ \begin{align} f(t)= & \frac{f({t}')}{t}, \\ f(t)= & \frac{1}{t\cdot {{\sigma' }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{\text{ln}(t)-{\mu }'}{{{\sigma' }}} \right)}^{2}}}} \end{align} }[/math]
- where:
- [math]\displaystyle{ f(t)\ge 0,T\gt 0,-\infty \lt {\mu }'\lt \infty ,{{\sigma' }}\gt 0 }[/math]