Template:Lognormal distribution probability density function: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
The lognormal distribution is a two-parameter distribution with parameters <math>{\mu }'</math> and <math>\sigma'</math> . The <math>pdf</math> for this distribution is given by: | The lognormal distribution is a two-parameter distribution with parameters <math>{\mu }'</math> and <math>\sigma'</math> . The <math>pdf</math> for this distribution is given by: | ||
::<math>f({t}')=\frac{1}{{{\sigma' }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma | ::<math>f({t}')=\frac{1}{{{\sigma' }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma' }}} \right)}^{2}}}}</math> | ||
where, <math>{T}'=\ln (T)</math>. , where the <math>T</math> values are the times-to-failure, and | where, <math>{T}'=\ln (T)</math>. , where the <math>T</math> values are the times-to-failure, and | ||
Line 27: | Line 27: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
f(T)= & \frac{f({T}')}{T}, \\ | f(T)= & \frac{f({T}')}{T}, \\ | ||
f(T)= & \frac{1}{T\cdot {{\sigma | f(T)= & \frac{1}{T\cdot {{\sigma' }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{\text{ln}(T)-{\mu }'}{{{\sigma' }}} \right)}^{2}}}} | ||
\end{align}</math> | \end{align}</math> | ||
:where: | :where: | ||
::<math>f(T)\ge 0,T>0,-\infty <{\mu }'<\infty ,{{\sigma | ::<math>f(T)\ge 0,T>0,-\infty <{\mu }'<\infty ,{{\sigma' }}>0</math> |
Revision as of 16:10, 13 February 2012
Lognormal Probability Density Function
The lognormal distribution is a two-parameter distribution with parameters [math]\displaystyle{ {\mu }' }[/math] and [math]\displaystyle{ \sigma' }[/math] . The [math]\displaystyle{ pdf }[/math] for this distribution is given by:
- [math]\displaystyle{ f({t}')=\frac{1}{{{\sigma' }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma' }}} \right)}^{2}}}} }[/math]
where, [math]\displaystyle{ {T}'=\ln (T) }[/math]. , where the [math]\displaystyle{ T }[/math] values are the times-to-failure, and
- [math]\displaystyle{ \mu'=\text{mean of the natural logarithms} }[/math]
- [math]\displaystyle{ \text{of the times-to-failure,} }[/math]
- [math]\displaystyle{ \sigma_{T'}=\text{standard deviation of the natural logarithms} }[/math]
- [math]\displaystyle{ \text{of the times-to-failure} }[/math]
The lognormal [math]\displaystyle{ pdf }[/math] can be obtained, realizing that for equal probabilities under the normal and lognormal [math]\displaystyle{ pdf }[/math] s, incremental areas should also be equal, or:
- [math]\displaystyle{ f(T)dT=f({T}')d{T}' }[/math]
Taking the derivative yields:
- [math]\displaystyle{ d{T}'=\frac{dT}{T} }[/math]
- Substitution yields:
- [math]\displaystyle{ \begin{align} f(T)= & \frac{f({T}')}{T}, \\ f(T)= & \frac{1}{T\cdot {{\sigma' }}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{\text{ln}(T)-{\mu }'}{{{\sigma' }}} \right)}^{2}}}} \end{align} }[/math]
- where:
- [math]\displaystyle{ f(T)\ge 0,T\gt 0,-\infty \lt {\mu }'\lt \infty ,{{\sigma' }}\gt 0 }[/math]