ALTA ALTA Standard Folio Data IPL-Lognormal: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Template:NoSkin}} | {{Template:NoSkin}} | ||
{| | {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;" | ||
|- | |- | ||
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]] | |||
|} | |||
{| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" | |||
|- | |- | ||
| | | valign="middle" |{{Font|Standard Folio Data IPL-Lognormal|11|tahoma|bold|gray}} | ||
|- | |- | ||
| | | valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}} | ||
|- | |- | ||
| | | valign="middle" | | ||
The IPL-lognormal model pdf can be obtained first by setting = L(V) in Eqn. ( 30). Therefore: | The IPL-lognormal model pdf can be obtained first by setting = L(V) in Eqn. ( 30). Therefore: | ||
<math> \breve{T}=L(V)=\frac{1}{K*V^n}</math> | <math> \breve{T}=L(V)=\frac{1}{K*V^n}</math> | ||
or: | or: | ||
Line 22: | Line 22: | ||
<math>\overline{T}'=-ln(K)-n ln(V) </math>(8) | <math>\overline{T}'=-ln(K)-n ln(V) </math>(8) | ||
|- | |- | ||
| align="center" valign="middle" | [http://reliawiki.com/index.php?title=Template:Ipl_lognormal&action=edit§ion=T-1 IPL-Lognormal] | | align="center" valign="middle" | [http://reliawiki.com/index.php?title=Template:Ipl_lognormal&action=edit§ion=T-1 IPL-Lognormal] | ||
|} | |} | ||
Revision as of 21:56, 10 February 2012
Standard Folio Data IPL-Lognormal |
ALTA |
The IPL-lognormal model pdf can be obtained first by setting = L(V) in Eqn. ( 30). Therefore: [math]\displaystyle{ \breve{T}=L(V)=\frac{1}{K*V^n} }[/math] or: [math]\displaystyle{ e^{\overline{T'}}=\frac{1}{K*V^n} }[/math] Thus: [math]\displaystyle{ \overline{T}'=-ln(K)-n ln(V) }[/math](8) |
IPL-Lognormal |