ALTA ALTA Standard Folio Data IPL-Lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Template:NoSkin}}
{{Template:NoSkin}}
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
|-
|-
! scope="col" |  
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|}
{| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
|-
| align="center" valign="middle" |{{Font|Standard Folio Data IPL-Lognormal|11|tahoma|bold|gray}}
| valign="middle" |{{Font|Standard Folio Data IPL-Lognormal|11|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
| valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" |
| valign="middle" |
The IPL-lognormal model pdf can be obtained first by setting  = L(V) in Eqn. ( 30). Therefore:
The IPL-lognormal model pdf can be obtained first by setting  = L(V) in Eqn. ( 30). Therefore:


<math> \breve{T}=L(V)=\frac{1}{K*V^n}</math>
<math> \breve{T}=L(V)=\frac{1}{K*V^n}</math>


or:
or:
Line 22: Line 22:


<math>\overline{T}'=-ln(K)-n ln(V) </math>(8)
<math>\overline{T}'=-ln(K)-n ln(V) </math>(8)
|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php?title=Template:Ipl_lognormal&action=edit&section=T-1 IPL-Lognormal]
| align="center" valign="middle" | [http://reliawiki.com/index.php?title=Template:Ipl_lognormal&action=edit&section=T-1 IPL-Lognormal]
|}
|}



Revision as of 21:56, 10 February 2012

Webnotes-alta.png
Standard Folio Data IPL-Lognormal
ALTA

The IPL-lognormal model pdf can be obtained first by setting = L(V) in Eqn. ( 30). Therefore:

[math]\displaystyle{ \breve{T}=L(V)=\frac{1}{K*V^n} }[/math]

or:

[math]\displaystyle{ e^{\overline{T'}}=\frac{1}{K*V^n} }[/math]

Thus:

[math]\displaystyle{ \overline{T}'=-ln(K)-n ln(V) }[/math](8)

IPL-Lognormal



Docedit.png