ALTA ALTA Standard Folio Data IPL-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Template:NoSkin}}
{{Template:NoSkin}}
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
|-
|-
! scope="col" |  
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|}
{| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
|-
| align="center" valign="middle" |{{Font|Standard Folio Data IPL-Weibull|11|tahoma|bold|gray}}
| valign="middle" |{{Font|Standard Folio Data IPL-Weibull|11|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
| valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" |
| valign="middle" |
<br>
<br>
The IPL-Weibull model can be derived by setting  <math>\eta =L(V)</math> , yielding the following IPL-Weibull  <math>pdf\ \ :</math>  
The IPL-Weibull model can be derived by setting  <math>\eta =L(V)</math> , yielding the following IPL-Weibull  <math>pdf\ \ :</math>  
<br>
<br>
::<math>f(t,V)=\beta K{{V}^{n}}{{\left( K{{V}^{n}}t \right)}^{\beta -1}}{{e}^{-{{\left( K{{V}^{n}}t \right)}^{\beta }}}}</math>
<math>f(t,V)=\beta K{{V}^{n}}{{\left( K{{V}^{n}}t \right)}^{\beta -1}}{{e}^{-{{\left( K{{V}^{n}}t \right)}^{\beta }}}}</math>
 
<br>
<br>
This is a three parameter model. Therefore it is more flexible but it also requires more laborious techniques for parameter estimation. The IPL-Weibull model yields the IPL-exponential model for  <math>\beta =1.</math>  
This is a three parameter model. Therefore it is more flexible but it also requires more laborious techniques for parameter estimation. The IPL-Weibull model yields the IPL-exponential model for  <math>\beta =1.</math>  
|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_weibull#IPL-Weibull IPL-Weibull]
| valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_weibull#IPL-Weibull IPL-Weibull]


|}
|}

Revision as of 21:54, 10 February 2012

Webnotes-alta.png
Standard Folio Data IPL-Weibull
ALTA


The IPL-Weibull model can be derived by setting [math]\displaystyle{ \eta =L(V) }[/math] , yielding the following IPL-Weibull [math]\displaystyle{ pdf\ \ : }[/math]
[math]\displaystyle{ f(t,V)=\beta K{{V}^{n}}{{\left( K{{V}^{n}}t \right)}^{\beta -1}}{{e}^{-{{\left( K{{V}^{n}}t \right)}^{\beta }}}} }[/math]
This is a three parameter model. Therefore it is more flexible but it also requires more laborious techniques for parameter estimation. The IPL-Weibull model yields the IPL-exponential model for [math]\displaystyle{ \beta =1. }[/math]

IPL-Weibull



Docedit.png