ALTA ALTA Standard Folio Data Arrhenius-Exponential: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Template:NoSkin}} | {{Template:NoSkin}} | ||
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" | {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;" | ||
|- | |||
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]] | |||
|} | |||
{| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" | |||
|- | |- | ||
! scope="col" | | ! scope="col" | | ||
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}} | {{Font|Reliability Web Notes|12|tahoma|bold|Blue}} | ||
|- | |- | ||
| | | valign="middle" |{{Font|Standard Folio Data Arrhenius-Exponential|11|tahoma|bold|gray}} | ||
|- | |- | ||
| | | valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}} | ||
|- | |- | ||
| | | valign="middle" | | ||
The <math>pdf</math> of the 1-parameter exponential distribution is given by: | The <math>pdf</math> of the 1-parameter exponential distribution is given by: | ||
<br> | <br> | ||
<math>f(t)=\lambda {{e}^{-\lambda t}}</math> | <math>f(t)=\lambda {{e}^{-\lambda t}}</math> | ||
<br> | <br> | ||
It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by: | It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by: | ||
<br> | <br> | ||
<math>\lambda =\frac{1}{m}</math> | <math>\lambda =\frac{1}{m}</math> | ||
<br> | <br> | ||
thus: | thus: | ||
<br> | <br> | ||
<math>f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}}</math> | <math>f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}}</math> | ||
<br> | <br> | ||
The Arrhenius-exponential model <math>pdf</math> can then be obtained by setting <math>m=L(V)</math> in Eqn. (arrhenius). | The Arrhenius-exponential model <math>pdf</math> can then be obtained by setting <math>m=L(V)</math> in Eqn. (arrhenius). | ||
<br> | <br> | ||
Therefore: | Therefore: | ||
<br> | <br> | ||
<math>m=L(V)=C{{e}^{\tfrac{B}{V}}}</math> | <math>m=L(V)=C{{e}^{\tfrac{B}{V}}}</math> | ||
<br> | <br> | ||
Substituting for <math>m</math> in Eqn. (pdfexpm) yields a <math>pdf</math> that is both a function of time and stress or: | Substituting for <math>m</math> in Eqn. (pdfexpm) yields a <math>pdf</math> that is both a function of time and stress or: | ||
<br> | <br> | ||
<math>f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}}</math> | <math>f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}}</math> | ||
|- | |- | ||
| | | valign="middle" | [http://reliawiki.com/index.php/Template:Aae#Arrhenius-Exponential Get More Details...] | ||
|} | |} | ||
Revision as of 21:46, 10 February 2012
Reliability Web Notes |
---|
Standard Folio Data Arrhenius-Exponential |
ALTA |
The [math]\displaystyle{ pdf }[/math] of the 1-parameter exponential distribution is given by:
|
Get More Details... |