ALTA ALTA Standard Folio Data Arrhenius-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Template:NoSkin}}
{{Template:NoSkin}}
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
|-
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
|}
{|  class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
|-
! scope="col" |  
! scope="col" |  
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|-
|-
| align="center" valign="middle" |{{Font|Standard Folio Data Arrhenius-Exponential|11|tahoma|bold|gray}}
| valign="middle" |{{Font|Standard Folio Data Arrhenius-Exponential|11|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
| valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" |
| valign="middle" |
The  <math>pdf</math>  of the 1-parameter exponential distribution is given by:
The  <math>pdf</math>  of the 1-parameter exponential distribution is given by:


<br>
<br>
<math>f(t)=\lambda {{e}^{-\lambda t}}</math>
<math>f(t)=\lambda {{e}^{-\lambda t}}</math>
<br>
<br>
It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:
It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:
<br>
<br>
<math>\lambda =\frac{1}{m}</math>
<math>\lambda =\frac{1}{m}</math>
<br>
<br>
thus:
thus:
<br>
<br>
<math>f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}}</math>
<math>f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}}</math>
<br>
<br>
The Arrhenius-exponential model  <math>pdf</math>  can then be obtained by setting  <math>m=L(V)</math>  in Eqn. (arrhenius).  
The Arrhenius-exponential model  <math>pdf</math>  can then be obtained by setting  <math>m=L(V)</math>  in Eqn. (arrhenius).  
<br>
<br>
Therefore:
Therefore:
<br>
<br>
<math>m=L(V)=C{{e}^{\tfrac{B}{V}}}</math>
<math>m=L(V)=C{{e}^{\tfrac{B}{V}}}</math>
<br>
<br>
Substituting for  <math>m</math>  in Eqn. (pdfexpm) yields a  <math>pdf</math>  that is both a function of time and stress or:
Substituting for  <math>m</math>  in Eqn. (pdfexpm) yields a  <math>pdf</math>  that is both a function of time and stress or:
<br>
<br>
<math>f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}}</math>
<math>f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}}</math>
|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Aae#Arrhenius-Exponential Get More Details...]
| valign="middle" | [http://reliawiki.com/index.php/Template:Aae#Arrhenius-Exponential Get More Details...]
 
|}
|}



Revision as of 21:46, 10 February 2012

Webnotes-alta.png

Reliability Web Notes

Standard Folio Data Arrhenius-Exponential
ALTA

The [math]\displaystyle{ pdf }[/math] of the 1-parameter exponential distribution is given by:


[math]\displaystyle{ f(t)=\lambda {{e}^{-\lambda t}} }[/math]
It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by:
[math]\displaystyle{ \lambda =\frac{1}{m} }[/math]
thus:
[math]\displaystyle{ f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}} }[/math]
The Arrhenius-exponential model [math]\displaystyle{ pdf }[/math] can then be obtained by setting [math]\displaystyle{ m=L(V) }[/math] in Eqn. (arrhenius).
Therefore:
[math]\displaystyle{ m=L(V)=C{{e}^{\tfrac{B}{V}}} }[/math]
Substituting for [math]\displaystyle{ m }[/math] in Eqn. (pdfexpm) yields a [math]\displaystyle{ pdf }[/math] that is both a function of time and stress or:
[math]\displaystyle{ f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}} }[/math]

Get More Details...



Docedit.png