ALTA ALTA Standard Folio Data Arrhenius-Lognormal: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
|} | |} | ||
{| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" | {| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" | ||
|- | |- | ||
| valign="middle" |{{Font|Standard Folio Data Arrhenius-Lognormal|11|tahoma|bold|gray}} | | valign="middle" |{{Font|Standard Folio Data Arrhenius-Lognormal|11|tahoma|bold|gray}} | ||
Line 16: | Line 13: | ||
<br> | <br> | ||
The <math>pdf</math> of the lognormal distribution is given by: | The <math>pdf</math> of the lognormal distribution is given by: | ||
<br> | <br> | ||
::<math>f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\bar{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math> | ::<math>f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\bar{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math> | ||
<br> | <br> | ||
where: | where: | ||
<br> | <br> | ||
<math>{T}'=\ln(T) </math> | <math>{T}'=\ln(T) </math> | ||
<br> | <br> | ||
and: | and: | ||
Line 70: | Line 63: | ||
|} | |} | ||
<br> | <br> | ||
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Arrhenius-Lognormal&action=edit]] | |||
[[ | [[Category:See example]] |
Revision as of 21:42, 10 February 2012
Standard Folio Data Arrhenius-Lognormal |
ALTA |
• [math]\displaystyle{ {T}'= }[/math] mean of the natural logarithms of the times-to-failure. • [math]\displaystyle{ T= }[/math] times-to-failure. • [math]\displaystyle{ {{\sigma }_{{{T}'}}}= }[/math] standard deviation of the natural logarithms of the times-to-failure.
The Arrhenius-lognormal model [math]\displaystyle{ pdf }[/math] can be obtained first by setting [math]\displaystyle{ \breve{T}=L(V) }[/math] in Eqn. (arrhenius). Therefore: [math]\displaystyle{ \breve{T}=L(V)=C{{e}^{\tfrac{B}{V}}} }[/math] or: [math]\displaystyle{ {{e}^{{{\overline{T}}^{\prime }}}}=C{{e}^{\tfrac{B}{V}}} }[/math] Thus: [math]\displaystyle{ {{\overline{T}}^{\prime }}=\ln (C)+\frac{B}{V} }[/math]
|
Get More Details... |