Template:Example: Normal Distribution RRY: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with ''''Normal Distribution RRY Example''' Fourteen units were reliability tested and the following life test data were obtained: {|align="center" border=1 cellspacing=1 |- |colsp…')
 
No edit summary
Line 6: Line 6:
{|align="center" border=1 cellspacing=1  
{|align="center" border=1 cellspacing=1  
|-
|-
|colspan="2" style="text-align:center"|Table 8.1 -The test data for Example 2
|colspan="2" style="text-align:center"|Table 8.1 -The test data
|-  
|-  
!Data point index
!Data point index
Line 43: Line 43:
Assuming the data follow a normal distribution, estimate the parameters and determine the correlation coefficient,  <math>\rho </math> , using rank regression on Y.
Assuming the data follow a normal distribution, estimate the parameters and determine the correlation coefficient,  <math>\rho </math> , using rank regression on Y.


====Solution to Example 2====
'''Solution'''
 
Construct a table like the one shown next.
Construct a table like the one shown next.


Line 68: Line 69:




:The median rank values ( <math>F({{T}_{i}})</math> ) can be found in rank tables, available in many statistical texts, or they can be estimated by using the Quick Statistical Reference in Weibull++.
:*The median rank values ( <math>F({{t}_{i}})</math> ) can be found in rank tables, available in many statistical texts, or they can be estimated by using the Quick Statistical Reference in Weibull++.
:The  <math>{{y}_{i}}</math>  values were obtained from standardized normal distribution's area tables by entering for  <math>F(z)</math>  and getting the corresponding  <math>z</math>  value ( <math>{{y}_{i}}</math> ).  As with the median rank values, these standard normal values can be obtained with the Quick Statistical Reference.
:*The  <math>{{y}_{i}}</math>  values were obtained from standardized normal distribution's area tables by entering for  <math>F(z)</math>  and getting the corresponding  <math>z</math>  value ( <math>{{y}_{i}}</math> ).  As with the median rank values, these standard normal values can be obtained with the Quick Statistical Reference.
Given the values in Table 8.2, calculate  <math>\widehat{a}</math>  and  <math>\widehat{b}</math>  using Eqns. (aan) and (bbn):
 
Given the values in Table 8.2, calculate  <math>\widehat{a}</math>  and  <math>\widehat{b}</math>  using:


::<math>\begin{align}
::<math>\begin{align}
Line 78: Line 80:
\end{align}</math>
\end{align}</math>


:and:
and:


::<math>\widehat{a}=\overline{y}-\widehat{b}\overline{T}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}-\widehat{b}\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{T}_{i}}}{N}</math>
::<math>\widehat{a}=\overline{y}-\widehat{b}\overline{T}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}-\widehat{b}\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{t}_{i}}}{N}</math>


:or:
or:


::<math>\widehat{a}=\frac{0}{14}-(0.02982)\frac{630}{14}=-1.3419</math>
::<math>\widehat{a}=\frac{0}{14}-(0.02982)\frac{630}{14}=-1.3419</math>


Therefore, from Eqn. (bn):
Therefore:


::<math>\widehat{\sigma}=\frac{1}{\hat{b}}=\frac{1}{0.02982}=33.5367</math>
::<math>\widehat{\sigma}=\frac{1}{\hat{b}}=\frac{1}{0.02982}=33.5367</math>


:and from Eqn. (an):
and:


::<math>\widehat{\mu }=-\widehat{a}\cdot \widehat{\sigma }=-(-1.3419)\cdot 33.5367\simeq 45</math>
::<math>\widehat{\mu }=-\widehat{a}\cdot \widehat{\sigma }=-(-1.3419)\cdot 33.5367\simeq 45</math>
Line 96: Line 98:
or  <math>\widehat{\mu }=45</math>  hours <math>.</math>  
or  <math>\widehat{\mu }=45</math>  hours <math>.</math>  


The correlation coefficient can be estimated using Eqn. (RHOn):
The correlation coefficient can be estimated using:


::<math>\widehat{\rho }=0.979</math>
::<math>\widehat{\rho }=0.979</math>
Line 102: Line 104:
The preceding example can be repeated using Weibull++ .
The preceding example can be repeated using Weibull++ .


:Create a new folio for Times-to-Failure data, and enter the data given in Table 8.1.
:*Create a new folio for Times-to-Failure data, and enter the data given in Table 8.1.
:Choose Normal from the Distributions list.
:*Choose Normal from the Distributions list.
:Go to the Analysis page and select Rank Regression on Y (RRY).
:*Go to the Analysis page and select Rank Regression on Y (RRY).
:Click the Calculate icon located on the Main page.
:*Click the Calculate icon located on the Main page.


[[Image:weibullfolio1.png|thumb|center|400px| ]]
[[Image:weibullfolio1.png|thumb|center|400px| ]]

Revision as of 18:45, 10 February 2012

Normal Distribution RRY Example

Fourteen units were reliability tested and the following life test data were obtained:


Table 8.1 -The test data
Data point index Time-to-failure
1 5
2 10
3 15
4 20
5 25
6 30
7 35
8 40
9 50
10 60
11 70
12 80
13 90
14 100


Assuming the data follow a normal distribution, estimate the parameters and determine the correlation coefficient, [math]\displaystyle{ \rho }[/math] , using rank regression on Y.

Solution

Construct a table like the one shown next.

[math]\displaystyle{ \overset{{}}{\mathop{\text{Table 8}\text{.2 - Least Squares Analysis}}}\, }[/math]
[math]\displaystyle{ \begin{matrix} \text{N} & \text{T}_{i} & \text{F(T}_{i}\text{)} & \text{y}_{i} & \text{T}_{i}^{2} & \text{y}_{i}^{2} & \text{T}_{i}\text{ y}_{i} \\ \text{1} & \text{5} & \text{0}\text{.0483} & \text{-1}\text{.6619} & \text{25} & \text{2}\text{.7619} & \text{-8}\text{.3095} \\ \text{2} & \text{10} & \text{0}\text{.1170} & \text{-1}\text{.1901} & \text{100} & \text{1}\text{.4163} & \text{-11}\text{.9010} \\ \text{3} & \text{15} & \text{0}\text{.1865} & \text{-0}\text{.8908} & \text{225} & \text{0}\text{.7935} & \text{-13}\text{.3620} \\ \text{4} & \text{20} & \text{0}\text{.2561} & \text{-0}\text{.6552} & \text{400} & \text{0}\text{.4292} & \text{-13}\text{.1030} \\ \text{5} & \text{25} & \text{0}\text{.3258} & \text{-0}\text{.4512} & \text{625} & \text{0}\text{.2036} & \text{-11}\text{.2800} \\ \text{6} & \text{30} & \text{0}\text{.3954} & \text{-0}\text{.2647} & \text{900} & \text{0}\text{.0701} & \text{-7}\text{.9422} \\ \text{7} & \text{35} & \text{0}\text{.4651} & \text{-0}\text{.0873} & \text{1225} & \text{0}\text{.0076} & \text{-3}\text{.0542} \\ \text{8} & \text{40} & \text{0}\text{.5349} & \text{0}\text{.0873} & \text{1600} & \text{0}\text{.0076} & \text{3}\text{.4905} \\ \text{9} & \text{50} & \text{0}\text{.6046} & \text{0}\text{.2647} & \text{2500} & \text{0}\text{.0701} & \text{13}\text{.2370} \\ \text{10} & \text{60} & \text{0}\text{.6742} & \text{0}\text{.4512} & \text{3600} & \text{0}\text{.2036} & \text{27}\text{.0720} \\ \text{11} & \text{70} & \text{0}\text{.7439} & \text{0}\text{.6552} & \text{4900} & \text{0}\text{.4292} & \text{45}\text{.8605} \\ \text{12} & \text{80} & \text{0}\text{.8135} & \text{0}\text{.8908} & \text{6400} & \text{0}\text{.7935} & \text{71}\text{.2640} \\ \text{13} & \text{90} & \text{0}\text{.8830} & \text{1}\text{.1901} & \text{8100} & \text{1}\text{.4163} & \text{107}\text{.1090} \\ \text{14} & \text{100} & \text{0}\text{.9517} & \text{1}\text{.6619} & \text{10000} & \text{2}\text{.7619} & \text{166}\text{.1900} \\ \mathop{}_{}^{} & \text{630} & {} & \text{0} & \text{40600} & \text{11}\text{.3646} & \text{365}\text{.2711} \\ \end{matrix} }[/math]


  • The median rank values ( [math]\displaystyle{ F({{t}_{i}}) }[/math] ) can be found in rank tables, available in many statistical texts, or they can be estimated by using the Quick Statistical Reference in Weibull++.
  • The [math]\displaystyle{ {{y}_{i}} }[/math] values were obtained from standardized normal distribution's area tables by entering for [math]\displaystyle{ F(z) }[/math] and getting the corresponding [math]\displaystyle{ z }[/math] value ( [math]\displaystyle{ {{y}_{i}} }[/math] ). As with the median rank values, these standard normal values can be obtained with the Quick Statistical Reference.

Given the values in Table 8.2, calculate [math]\displaystyle{ \widehat{a} }[/math] and [math]\displaystyle{ \widehat{b} }[/math] using:

[math]\displaystyle{ \begin{align} & \widehat{b}= & \frac{\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{T}_{i}}{{y}_{i}}-(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{T}_{i}})(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{y}_{i}})/14}{\underset{i=1}{\overset{14}{\mathop{\sum }}}\,T_{i}^{2}-{{(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{T}_{i}})}^{2}}/14} \\ & & \\ & \widehat{b}= & \frac{365.2711-(630)(0)/14}{40,600-{{(630)}^{2}}/14}=0.02982 \end{align} }[/math]

and:

[math]\displaystyle{ \widehat{a}=\overline{y}-\widehat{b}\overline{T}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}-\widehat{b}\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{t}_{i}}}{N} }[/math]

or:

[math]\displaystyle{ \widehat{a}=\frac{0}{14}-(0.02982)\frac{630}{14}=-1.3419 }[/math]

Therefore:

[math]\displaystyle{ \widehat{\sigma}=\frac{1}{\hat{b}}=\frac{1}{0.02982}=33.5367 }[/math]

and:

[math]\displaystyle{ \widehat{\mu }=-\widehat{a}\cdot \widehat{\sigma }=-(-1.3419)\cdot 33.5367\simeq 45 }[/math]

or [math]\displaystyle{ \widehat{\mu }=45 }[/math] hours [math]\displaystyle{ . }[/math]

The correlation coefficient can be estimated using:

[math]\displaystyle{ \widehat{\rho }=0.979 }[/math]

The preceding example can be repeated using Weibull++ .

  • Create a new folio for Times-to-Failure data, and enter the data given in Table 8.1.
  • Choose Normal from the Distributions list.
  • Go to the Analysis page and select Rank Regression on Y (RRY).
  • Click the Calculate icon located on the Main page.
Weibullfolio1.png

The probability plot is shown next.

Weibullfolioplot1st.png