Template:Normal probability density function: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
where: | where: | ||
<math>\mu</math> = mean of the normal times-to-faiure, also noted as \bar T | <math>\mu</math> = mean of the normal times-to-faiure, also noted as <math>\bar{T}</math>, | ||
<math>\theta=\text{standard deviation of the times-to-failure} </math> | <math>\theta=\text{standard deviation of the times-to-failure} </math> |
Revision as of 17:56, 10 February 2012
Normal Probability Density Function
The [math]\displaystyle{ pdf }[/math] of the normal distribution is given by:
- [math]\displaystyle{ f(t)=\frac{1}{\sigma \sqrt{2\pi }}{{e}^{-\frac{1}{2}{{\left( \frac{t-\mu }{\sigma } \right)}^{2}}}} }[/math]
where:
[math]\displaystyle{ \mu }[/math] = mean of the normal times-to-faiure, also noted as [math]\displaystyle{ \bar{T} }[/math],
[math]\displaystyle{ \theta=\text{standard deviation of the times-to-failure} }[/math]
It is a two-parameter distribution with parameters [math]\displaystyle{ \mu }[/math] (or [math]\displaystyle{ \bar{T} }[/math] ) and [math]\displaystyle{ {{\sigma }} }[/math] , i.e. the mean and the standard deviation, respectively.