Template:Exponential Distribution Example: Likelihood Ratio Bound for Time: Difference between revisions
Line 1: | Line 1: | ||
'''Likelihood Ratio Bound on Time''' | |||
For the data given in Example 5: Likelihood Ratio Bound for <math>\lambda </math>, determine the 85% two-sided confidence bounds on the time estimate for a reliability of 90%. The ML estimate for the time at <math>R(t)=90%</math> is <math>\hat{t}=7.797.</math>. | For the data given in Example 5: Likelihood Ratio Bound for <math>\lambda </math>, determine the 85% two-sided confidence bounds on the time estimate for a reliability of 90%. The ML estimate for the time at <math>R(t)=90%</math> is <math>\hat{t}=7.797.</math>. | ||
'''Solution | '''Solution''' | ||
In this example, we are trying to determine the 85% two-sided confidence bounds on the time estimate of 7.797. This is accomplished by substituting <math>R=0.90</math> and <math>\alpha =0.85</math> into the likelihood ratio bound equation. It now remains to find the values of <math>t</math> which satisfy this equation. Since there is only one parameter, there are only two values of <math>t</math> that will satisfy the equation. These values represent the <math>\delta =85%</math> two-sided confidence limits of the time estimate <math>\hat{t}</math>. For our problem, the confidence limits are: | In this example, we are trying to determine the 85% two-sided confidence bounds on the time estimate of 7.797. This is accomplished by substituting <math>R=0.90</math> and <math>\alpha =0.85</math> into the likelihood ratio bound equation. It now remains to find the values of <math>t</math> which satisfy this equation. Since there is only one parameter, there are only two values of <math>t</math> that will satisfy the equation. These values represent the <math>\delta =85%</math> two-sided confidence limits of the time estimate <math>\hat{t}</math>. For our problem, the confidence limits are: | ||
::<math>{{\hat{t}}_{R=0.9}}=(4.359,16.033).</math> | ::<math>{{\hat{t}}_{R=0.9}}=(4.359,16.033).</math> |
Revision as of 18:28, 9 February 2012
Likelihood Ratio Bound on Time For the data given in Example 5: Likelihood Ratio Bound for [math]\displaystyle{ \lambda }[/math], determine the 85% two-sided confidence bounds on the time estimate for a reliability of 90%. The ML estimate for the time at [math]\displaystyle{ R(t)=90% }[/math] is [math]\displaystyle{ \hat{t}=7.797. }[/math].
Solution
In this example, we are trying to determine the 85% two-sided confidence bounds on the time estimate of 7.797. This is accomplished by substituting [math]\displaystyle{ R=0.90 }[/math] and [math]\displaystyle{ \alpha =0.85 }[/math] into the likelihood ratio bound equation. It now remains to find the values of [math]\displaystyle{ t }[/math] which satisfy this equation. Since there is only one parameter, there are only two values of [math]\displaystyle{ t }[/math] that will satisfy the equation. These values represent the [math]\displaystyle{ \delta =85% }[/math] two-sided confidence limits of the time estimate [math]\displaystyle{ \hat{t} }[/math]. For our problem, the confidence limits are:
- [math]\displaystyle{ {{\hat{t}}_{R=0.9}}=(4.359,16.033). }[/math]