Template:Bounds on Reliability FMB ED: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '====Bounds on Reliability==== The reliability of the two-parameter exponential distribution is: ::<math>\hat{R}(T;\hat{\lambda })={{e}^{-\hat{\lambda }(T-\hat{\gamma })}}</mat…')
 
Line 4: Line 4:




::<math>\hat{R}(T;\hat{\lambda })={{e}^{-\hat{\lambda }(T-\hat{\gamma })}}</math>
::<math>\hat{R}(t;\hat{\lambda })={{e}^{-\hat{\lambda }(t-\hat{\gamma })}}</math>




Line 11: Line 11:


::<math>\begin{align}
::<math>\begin{align}
   & {{R}_{L}}= & {{e}^{-{{\lambda }_{U}}(T-\hat{\gamma })}} \\  
   & {{R}_{L}}= & {{e}^{-{{\lambda }_{U}}(t-\hat{\gamma })}} \\  
  & {{R}_{U}}= & {{e}^{-{{\lambda }_{L}}(T-\hat{\gamma })}}   
  & {{R}_{U}}= & {{e}^{-{{\lambda }_{L}}(t-\hat{\gamma })}}   
\end{align}</math>
\end{align}</math>


These equations hold true for the one-parameter exponential distribution, with <math>\gamma =0</math>.
These equations hold true for the one-parameter exponential distribution, with <math>\gamma =0</math>.

Revision as of 23:50, 7 February 2012

Bounds on Reliability

The reliability of the two-parameter exponential distribution is:


[math]\displaystyle{ \hat{R}(t;\hat{\lambda })={{e}^{-\hat{\lambda }(t-\hat{\gamma })}} }[/math]


The corresponding confidence bounds are estimated from:


[math]\displaystyle{ \begin{align} & {{R}_{L}}= & {{e}^{-{{\lambda }_{U}}(t-\hat{\gamma })}} \\ & {{R}_{U}}= & {{e}^{-{{\lambda }_{L}}(t-\hat{\gamma })}} \end{align} }[/math]

These equations hold true for the one-parameter exponential distribution, with [math]\displaystyle{ \gamma =0 }[/math].