Template:Exponential Reliable Life: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 5: Line 5:
::<math>R({{t}_{R}})={{e}^{-\lambda ({{t}_{R}}-\gamma )}}</math>
::<math>R({{t}_{R}})={{e}^{-\lambda ({{t}_{R}}-\gamma )}}</math>


::<math>\ln [R({{t}_{R}})]=-\lambda ({{t}_{R}}-\gamma )</math>
::<math>\ln[R({{t}_{R}})]=-\lambda({{t}_{R}}-\gamma )</math>


or:
or:


::<math>{{t}_{R}}=\gamma -\frac{\ln [R({{t}_{R}})]}{\lambda }</math>
::<math>{{t}_{R}}=\gamma -\frac{\ln [R({{t}_{R}})]}{\lambda }</math>

Revision as of 22:59, 7 February 2012

The Exponential Reliable Life

The reliable life, or the mission duration for a desired reliability goal, [math]\displaystyle{ {{t}_{R}} }[/math], for the one-parameter exponential distribution is:

[math]\displaystyle{ R({{t}_{R}})={{e}^{-\lambda ({{t}_{R}}-\gamma )}} }[/math]
[math]\displaystyle{ \ln[R({{t}_{R}})]=-\lambda({{t}_{R}}-\gamma ) }[/math]

or:

[math]\displaystyle{ {{t}_{R}}=\gamma -\frac{\ln [R({{t}_{R}})]}{\lambda } }[/math]