Template:Alta exponential reliability function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '====The Reliability Function==== The 1-parameter exponential reliability function is given by: <br> ::<math>R(T)={{e}^{-\lambda T}}={{e}^{-\tfrac{T}{m}}}</math> <br> This functio…')
 
Line 6: Line 6:
This function is the complement of the exponential cumulative distribution function or:  
This function is the complement of the exponential cumulative distribution function or:  
<br>
<br>
::<math>R(T)=1-Q(T)=1-\mathop{}_{0}^{T}f(T)dT</math>
::<math>R(T)=1-Q(T)=1-\int_{0}^{T}f(T)dT</math>
<br>
<br>
:and:  
:and:  
<br>
<br>
::<math>R(T)=1-\mathop{}_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}}</math>
::<math>R(T)=1-\int_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}}</math>
<br>
<br>

Revision as of 23:40, 6 February 2012

The Reliability Function

The 1-parameter exponential reliability function is given by:

[math]\displaystyle{ R(T)={{e}^{-\lambda T}}={{e}^{-\tfrac{T}{m}}} }[/math]


This function is the complement of the exponential cumulative distribution function or:

[math]\displaystyle{ R(T)=1-Q(T)=1-\int_{0}^{T}f(T)dT }[/math]


and:


[math]\displaystyle{ R(T)=1-\int_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}} }[/math]