Template:LoglogisticDistribution: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 7: Line 7:
   f(t)= & \frac{e^z}{\sigma{t}{(1+{e^z})^2}} \\  
   f(t)= & \frac{e^z}{\sigma{t}{(1+{e^z})^2}} \\  
   z= & \frac{t'-{\mu }}{\sigma } \\  
   z= & \frac{t'-{\mu }}{\sigma } \\  
f(t)\ge  & 0, \t>0, \{{\sigma}}>0, \\  
f(t)\ge  & 0, t>0, {{\sigma}}>0, \\  
   {t}'= & ln(t)   
   {t}'= & ln(t)   
  \end{align}</math>
  \end{align}</math>
<br>
<br>
:where,
where,
<br>
::<math>\begin{align}  
::<math>\begin{align}  
  \mu= & \text{scale parameter}  \\
  \mu= & \text{scale parameter}  \\

Revision as of 23:03, 3 February 2012

The Loglogistic Distribution

As may be summarized from the name, the loglogistic distribution is similar to the logistic distribution. Specifically, the data follows a loglogistic distribution when the natural logarithms of the times-to-failure follow a logistic distribution. Accordingly, the loglogistic and lognormal distributions also share many similarities.
The [math]\displaystyle{ pdf }[/math] of the loglogistic distribution is given by:

[math]\displaystyle{ \begin{align} f(t)= & \frac{e^z}{\sigma{t}{(1+{e^z})^2}} \\ z= & \frac{t'-{\mu }}{\sigma } \\ f(t)\ge & 0, t\gt 0, {{\sigma}}\gt 0, \\ {t}'= & ln(t) \end{align} }[/math]


where,

[math]\displaystyle{ \begin{align} \mu= & \text{scale parameter} \\ \sigma=& \text{shape parameter} \end{align} }[/math]


The loglogistic distribution and its characteristics are presented in more detail in Chapter 10.