Weibull++ Standard Folio Data Lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Template:NoSkin}}
{{Template:NoSkin}}
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
 
| align="center" valign="middle" | [[Image:weibullworld.gif|center]]
|-
|-
! scope="col" |  
! scope="col" |  
Line 27: Line 26:
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/Weibull_Examples_Lognormal See Examples...]
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/Weibull_Examples_Lognormal See Examples...]
|}
|}
<br/>
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_Lognormal&action=edit]]

Revision as of 16:58, 27 January 2012

Reliability Web Notes

Weibull Folio- Lognormal
Life Data Analysis

The lognormal distribution is commonly used to model the lives of units whose failure modes are of a fatigue-stress nature. It has an increasing failure rate behavior and then decreasing towards the end of life.

The pdf is given by:
[math]\displaystyle{ f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]
where,
[math]\displaystyle{ {T}'=\ln (T) }[/math]
the natural logarithm of the time-to-failure and
[math]\displaystyle{ \mu' \text{ and } \sigma_{T'} }[/math]
are the mean and standard deviation of of the natural logarithms of the times-to-failure.

Lognormal Distribution
See Examples...


Docedit.png