ALTA ALTA Standard Folio Data Arrhenius-Lognormal: Difference between revisions
No edit summary |
No edit summary |
||
Line 63: | Line 63: | ||
|- | |- | ||
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Alta_al#Arrhenius-Lognormal Get More Details...] | | align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Alta_al#Arrhenius-Lognormal Get More Details...] | ||
|} | |} | ||
Revision as of 16:50, 24 January 2012
Reliability Web Notes |
---|
Standard Folio Data Arrhenius-Lognormal |
ALTA |
• [math]\displaystyle{ {T}'= }[/math] mean of the natural logarithms of the times-to-failure. • [math]\displaystyle{ T= }[/math] times-to-failure. • [math]\displaystyle{ {{\sigma }_{{{T}'}}}= }[/math] standard deviation of the natural logarithms of the times-to-failure.
The Arrhenius-lognormal model [math]\displaystyle{ pdf }[/math] can be obtained first by setting [math]\displaystyle{ \breve{T}=L(V) }[/math] in Eqn. (arrhenius). Therefore: [math]\displaystyle{ \breve{T}=L(V)=C{{e}^{\tfrac{B}{V}}} }[/math] or: [math]\displaystyle{ {{e}^{{{\overline{T}}^{\prime }}}}=C{{e}^{\tfrac{B}{V}}} }[/math] Thus: [math]\displaystyle{ {{\overline{T}}^{\prime }}=\ln (C)+\frac{B}{V} }[/math]
|
Get More Details... |