Weibull++ Standard Folio Data 2P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" |
The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It can model an increasing, decreasing and or constant failure rate behavior.  The 2-parameter Weibull is the most commonly used form of the distribution. It's pdf is given by:
{{two parameter weibull distribution}}
|-
| align="center" valign="middle" |
<br><math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math>
<br>Beta is the shape parameter or slope. Values less than one incicate a decreasing failure rate, greater then one an increasing failure rate, and when one a constant failure rate. Eta is the scale parameter, or characteristic life.  Eta represents the time by which 63.2% of the units fail.<br>
<br><math> \beta= </math> shape parameter (or slope).
|-
|-
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]

Revision as of 16:05, 24 January 2012

Reliability Web Notes

Weibull Folio
Life Data Analysis
Two-Parameter Weibull Distribution

Template:Two parameter weibull distribution

The Weibull Distribution
See Examples...



Docedit.png