BlockSim Simulation RBD Plot ptSysFailures: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 14: Line 14:
This is the probability that the system has not failed by time  . This is similar to point availability with the major exception that it only looks at the probability that the system did not have a single failure. Other (non-failure) downing events are ignored. During the simulation, a special counter again must be used. This counter is increased by one (once in each simulation) if the system has had at least one failure up to 300 hours. Thus, the point reliability at 300 would be the number of times the system did not fail up to 300 divided by the number of simulations. For this example, this is 0 because the system failed prior to 300 hours 1000 times out of the 1000 simulations.
This is the probability that the system has not failed by time  . This is similar to point availability with the major exception that it only looks at the probability that the system did not have a single failure. Other (non-failure) downing events are ignored. During the simulation, a special counter again must be used. This counter is increased by one (once in each simulation) if the system has had at least one failure up to 300 hours. Thus, the point reliability at 300 would be the number of times the system did not fail up to 300 divided by the number of simulations. For this example, this is 0 because the system failed prior to 300 hours 1000 times out of the 1000 simulations.
|-
|-
| align="center" valign="middle" | [Systems Analysis through Simulation]
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/Repairable_Systems_Analysis_Through_Simulation Systems Analysis through Simulation]
|}
|}



Revision as of 15:50, 19 January 2012

Reliability Web Notes

Diagram Simulation Point System Failures
BlockSim

This is the average number of system failures. The system failures (not downing events) for all simulations are counted and then averaged. For this case, this is 3.993, which implies that a total of 3,993 system failure events occurred over 1000 simulations. Thus, the expected number of system failures for one run is 3.993. This number includes all failures, even those that may have a duration of zero

This is the probability that the system has not failed by time . This is similar to point availability with the major exception that it only looks at the probability that the system did not have a single failure. Other (non-failure) downing events are ignored. During the simulation, a special counter again must be used. This counter is increased by one (once in each simulation) if the system has had at least one failure up to 300 hours. Thus, the point reliability at 300 would be the number of times the system did not fail up to 300 divided by the number of simulations. For this example, this is 0 because the system failed prior to 300 hours 1000 times out of the 1000 simulations.

Systems Analysis through Simulation



Docedit.png