ALTA ALTA Standard Folio Data Arrhenius-Exponential: Difference between revisions
(Created page with '{{Template:NoSkin}} {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" |- ! scope="col" | {{Font|Reliability Web Notes|12|tahoma|bold|Blu…') |
No edit summary |
||
Line 10: | Line 10: | ||
|- | |- | ||
| align="center" valign="middle" | | | align="center" valign="middle" | | ||
The <math>pdf</math> of the 1-parameter exponential distribution is given by: | |||
<br> | |||
<math>f(t)=\lambda {{e}^{-\lambda t}}</math> | |||
<br> | |||
It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by: | |||
<br> | |||
<math>\lambda =\frac{1}{m}</math> | |||
<br> | |||
thus: | |||
<br> | |||
<math>f(t)=\frac{1}{m}{{e}^{-\tfrac{t}{m}}}</math> | |||
<br> | |||
The Arrhenius-exponential model <math>pdf</math> can then be obtained by setting <math>m=L(V)</math> in Eqn. (arrhenius). | |||
<br> | |||
Therefore: | |||
<br> | |||
<math>m=L(V)=C{{e}^{\tfrac{B}{V}}}</math> | |||
<br> | |||
Substituting for <math>m</math> in Eqn. (pdfexpm) yields a <math>pdf</math> that is both a function of time and stress or: | |||
<br> | |||
<math>f(t,V)=\frac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot {{e}^{-\tfrac{1}{C{{e}^{\tfrac{B}{V}}}}\cdot t}}</math> | |||
|- | |- | ||
| align="center" valign="middle" | | | align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Aae#Arrhenius-Exponential Get More Details...] | ||
|- | |- | ||
| align="center" valign="middle" | [Link2 See Examples...] | | align="center" valign="middle" | [Link2 See Examples...] |
Revision as of 21:46, 16 January 2012
Reliability Web Notes |
---|
Standard Folio Data Arrhenius-Exponential |
ALTA |
The [math]\displaystyle{ pdf }[/math] of the 1-parameter exponential distribution is given by:
|
Get More Details... |
[Link2 See Examples...] |