ALTA ALTA Standard Folio Data Arrhenius-Lognormal: Difference between revisions
(Created page with '{{Template:NoSkin}} {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" |- ! scope="col" | {{Font|Reliability Web Notes|12|tahoma|bold|Blu…') |
No edit summary |
||
Line 10: | Line 10: | ||
|- | |- | ||
| align="center" valign="middle" | | | align="center" valign="middle" | | ||
<br> | |||
The <math>pdf</math> of the lognormal distribution is given by: | |||
<br> | |||
<br> | |||
::<math>f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\bar{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math> | |||
<br> | |||
where: | |||
<br> | |||
<math>{T}'=\ln(T) </math> | |||
<br> | |||
and: | |||
<br> | |||
• <math>T=</math> times-to-failure. | |||
• <math>{T}'=</math> mean of the natural logarithms of the times-to-failure. | |||
• <math>T=</math> times-to-failure. | |||
• <math>{{\sigma }_{{{T}'}}}=</math> standard deviation of the natural logarithms of the times-to-failure. | |||
<br> | |||
<br> | |||
The median of the lognormal distribution is given by: | |||
<br> | |||
::<math>\breve{T}={{e}^{{{\overline{T}}^{\prime }}}}</math> | |||
<br> | |||
The Arrhenius-lognormal model <math>pdf</math> can be obtained first by setting <math>\breve{T}=L(V)</math> in Eqn. (arrhenius). Therefore: | |||
<math>\breve{T}=L(V)=C{{e}^{\tfrac{B}{V}}}</math> | |||
or: | |||
<math>{{e}^{{{\overline{T}}^{\prime }}}}=C{{e}^{\tfrac{B}{V}}}</math> | |||
Thus: | |||
<math>{{\overline{T}}^{\prime }}=\ln (C)+\frac{B}{V}</math> | |||
Substituting Eqn. (arrh-logn-mean) into Eqn. (arrh-logn-pdf) yields the Arrhenius-lognormal model <math>pdf</math> or: | |||
::<math>f(T,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\ln (C)-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math> | |||
<br> | |||
Note that in Eqn. (arrh-logn-pdf), it was assumed that the standard deviation of the natural logarithms of the times-to-failure, <math>{{\sigma }_{{{T}'}}},</math> is independent of stress. This assumption implies that the shape of the distribution does not change with stress ( <math>{{\sigma }_{{{T}'}}}</math> is the shape parameter of the lognormal distribution). | |||
<br> | |||
|- | |- | ||
| align="center" valign="middle" | | | align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Alta_al#Arrhenius-Lognormal Get More Details...] | ||
|- | |- | ||
| align="center" valign="middle" | [Link2 See Examples...] | | align="center" valign="middle" | [Link2 See Examples...] |
Revision as of 21:45, 16 January 2012
Reliability Web Notes |
---|
Standard Folio Data Arrhenius-Lognormal |
ALTA |
• [math]\displaystyle{ {T}'= }[/math] mean of the natural logarithms of the times-to-failure. • [math]\displaystyle{ T= }[/math] times-to-failure. • [math]\displaystyle{ {{\sigma }_{{{T}'}}}= }[/math] standard deviation of the natural logarithms of the times-to-failure.
The Arrhenius-lognormal model [math]\displaystyle{ pdf }[/math] can be obtained first by setting [math]\displaystyle{ \breve{T}=L(V) }[/math] in Eqn. (arrhenius). Therefore: [math]\displaystyle{ \breve{T}=L(V)=C{{e}^{\tfrac{B}{V}}} }[/math] or: [math]\displaystyle{ {{e}^{{{\overline{T}}^{\prime }}}}=C{{e}^{\tfrac{B}{V}}} }[/math] Thus: [math]\displaystyle{ {{\overline{T}}^{\prime }}=\ln (C)+\frac{B}{V} }[/math]
|
Get More Details... |
[Link2 See Examples...] |