ALTA ALTA Standard Folio Data PPH-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 22: Line 22:


|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Multivariable_Relationships:_General_Log-Linear_and_Proportional_Hazards#Proportional_Hazards_Model Get More Details...]
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:PH_Model Get More Details...]
|-
|-
| align="center" valign="middle" | [Link2 See Examples...]
| align="center" valign="middle" | [Link2 See Examples...]

Revision as of 21:06, 16 January 2012

Reliability Web Notes

Standard Folio Data PPH-Exponential
ALTA

A parametric form of the proportional hazards model can be obtained by assuming an underlying distribution. In ALTA PRO, the Weibull and exponential distributions are available. In this section we will consider the Weibull distribution to formulate the parametric proportional hazards model. In other words, it is assumed that the baseline failure rate in Eqn. (Prop. Failure Rate) is parametric and given by the Weibull distribution. In this case, the baseline failure rate is given by:


[math]\displaystyle{ {{\lambda }_{0}}(t)=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}} }[/math]


The PH failure rate then becomes:


[math]\displaystyle{ \lambda (t,\underline{X})=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}\cdot {{e}^{\mathop{}_{j=1}^{m}{{a}_{j}}{{x}_{j}}}} }[/math]
Get More Details...
[Link2 See Examples...]



Docedit.png