ALTA ALTA Standard Folio Data PPH-Weibull: Difference between revisions
No edit summary |
No edit summary |
||
Line 28: | Line 28: | ||
|- | |- | ||
| align="center" valign="middle" | [http://reliawiki.com/index.php | | align="center" valign="middle" | [http://reliawiki.com/index.php/Template:PH_Model Get More Details...] | ||
|- | |- | ||
| align="center" valign="middle" | [Link2 See Examples...] | | align="center" valign="middle" | [Link2 See Examples...] |
Revision as of 21:06, 16 January 2012
Reliability Web Notes |
---|
Standard Folio Data PPH-Weibull |
ALTA |
Solving for the parameters that maximize Eqn. (PH LKV) will yield the parameters for the PH-Weibull model. Note that for [math]\displaystyle{ \beta }[/math] = 1, Eqn. (PH LKV) becomes the likelihood function for the PH-exponential model, which is similar to the original form of the proportional hazards model proposed by Cox [28].
• [math]\displaystyle{ {{a}_{i,GLL}} }[/math] are the parameters of the general log-linear model. In this case, the likelihood functions given by Eqns. (PH LKV) and (GLL-LK) are identical. Therefore, if no transformation on the covariates is performed, the parameter values that maximize Eqn. (GLL-LK) also maximize the likelihood function for the proportional hazards-Weibull (PHW) model with parameters given by Eqn. (GLL Parameters). Note that for [math]\displaystyle{ \beta }[/math] = 1 (exponential life distribution), Eqns. (PH LKV) and (GLL-LK) are identical, and [math]\displaystyle{ {{a}_{i,PH}}=-{{a}_{i,GLL}}. }[/math]
|
Get More Details... |
[Link2 See Examples...] |