ALTA ALTA Standard Folio Data PPH-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '{{Template:NoSkin}} {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" |- ! scope="col" | {{Font|Reliability Web Notes|12|tahoma|bold|Blu…')
 
No edit summary
Line 10: Line 10:
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" |
Content 1
Solving for the parameters that maximize Eqn. (PH LKV) will yield the parameters for the PH-Weibull model. Note that for  <math>\beta </math>  = 1, Eqn. (PH LKV) becomes the likelihood function for the PH-exponential model, which is similar to the original form of the proportional hazards model proposed by Cox [28].
<br>
Note that the likelihood function given by Eqn. (GLL-LK) is very similar to the likelihood function for the proportional hazards-Weibull model given by Eqn. (PH LKV). In particular, the shape parameter of the Weibull distribution can be included in the regression coefficients of Eqn. (13) as follows:
 
<br>
::<math>{{a}_{i,PH}}=-\beta \cdot {{a}_{i,GLL}}</math>
 
<br>
:where:
<br>
• <math>{{a}_{i,PH}}</math>  are the parameters of the PH model.
 
• <math>{{a}_{i,GLL}}</math>  are the parameters of the general log-linear model.
 
In this case, the likelihood functions given by Eqns. (PH LKV) and (GLL-LK) are identical. Therefore, if no transformation on the covariates is performed, the parameter values that maximize Eqn. (GLL-LK) also maximize the likelihood function for the proportional hazards-Weibull (PHW) model with parameters given by Eqn. (GLL Parameters). Note that for  <math>\beta </math>  = 1 (exponential life distribution), Eqns. (PH LKV) and (GLL-LK) are identical, and  <math>{{a}_{i,PH}}=-{{a}_{i,GLL}}.</math>
<br>
 
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" | [http://reliawiki.com/index.php?title=Multivariable_Relationships:_General_Log-Linear_and_Proportional_Hazards&action=edit&section=10 Get More Details...]
Content 2
|-
| align="center" valign="middle" | [Link1 Get More Details...]
|-
|-
| align="center" valign="middle" | [Link2 See Examples...]
| align="center" valign="middle" | [Link2 See Examples...]

Revision as of 21:03, 16 January 2012

Reliability Web Notes

Standard Folio Data PPH-Weibull
ALTA

Solving for the parameters that maximize Eqn. (PH LKV) will yield the parameters for the PH-Weibull model. Note that for [math]\displaystyle{ \beta }[/math] = 1, Eqn. (PH LKV) becomes the likelihood function for the PH-exponential model, which is similar to the original form of the proportional hazards model proposed by Cox [28].
Note that the likelihood function given by Eqn. (GLL-LK) is very similar to the likelihood function for the proportional hazards-Weibull model given by Eqn. (PH LKV). In particular, the shape parameter of the Weibull distribution can be included in the regression coefficients of Eqn. (13) as follows:


[math]\displaystyle{ {{a}_{i,PH}}=-\beta \cdot {{a}_{i,GLL}} }[/math]


where:


[math]\displaystyle{ {{a}_{i,PH}} }[/math] are the parameters of the PH model.

[math]\displaystyle{ {{a}_{i,GLL}} }[/math] are the parameters of the general log-linear model.

In this case, the likelihood functions given by Eqns. (PH LKV) and (GLL-LK) are identical. Therefore, if no transformation on the covariates is performed, the parameter values that maximize Eqn. (GLL-LK) also maximize the likelihood function for the proportional hazards-Weibull (PHW) model with parameters given by Eqn. (GLL Parameters). Note that for [math]\displaystyle{ \beta }[/math] = 1 (exponential life distribution), Eqns. (PH LKV) and (GLL-LK) are identical, and [math]\displaystyle{ {{a}_{i,PH}}=-{{a}_{i,GLL}}. }[/math]

Get More Details...
[Link2 See Examples...]



Docedit.png