ALTA ALTA Standard Folio Data TNT-Lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '{{Template:NoSkin}} {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" |- ! scope="col" | {{Font|Reliability Web Notes|12|tahoma|bold|Blu…')
 
No edit summary
Line 10: Line 10:
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" |
Content 1
The T-NT lognormal model <math>pdf</math> can be obtained first by setting <math>\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{T}=L(V)</math>
in Eqn. (Temp-Volt).
<br>
Therefore:
 
<br>
<math>\breve{T}=L(V)=\frac{C}{{{U}^{n}}}{{e}^{\tfrac{B}{V}}}</math>
 
<br>
or:
 
<br>
<math>{{e}^{{{\overline{T}}^{\prime }}}}=\frac{C}{{{U}^{n}}}{{e}^{\tfrac{B}{V}}}</math>
 
<br>
Thus:
 
<br>
<math>{{\overline{T}}^{\prime }}=\ln (C)-n\ln (U)+\frac{B}{V}</math>
 
<br>
Substituting Eqn.(TV-logn-mean)into Eqn. (TV-logn-pdf) yields the T-NT lognormal model  <math>pdf</math> or:
 
<br>
<math>f(T,U,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\ln (C)+n\ln (U)-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
 
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:TNT_Lognormal Get More Details...]
Content 2
|-
| align="center" valign="middle" | [Link1 Get More Details...]
|-
|-
| align="center" valign="middle" | [Link2 See Examples...]
| align="center" valign="middle" | [Link2 See Examples...]

Revision as of 18:30, 16 January 2012

Reliability Web Notes

Standard Folio Data TNT-Lognormal
ALTA

The T-NT lognormal model [math]\displaystyle{ pdf }[/math] can be obtained first by setting [math]\displaystyle{ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{T}=L(V) }[/math] in Eqn. (Temp-Volt).
Therefore:


[math]\displaystyle{ \breve{T}=L(V)=\frac{C}{{{U}^{n}}}{{e}^{\tfrac{B}{V}}} }[/math]


or:


[math]\displaystyle{ {{e}^{{{\overline{T}}^{\prime }}}}=\frac{C}{{{U}^{n}}}{{e}^{\tfrac{B}{V}}} }[/math]


Thus:


[math]\displaystyle{ {{\overline{T}}^{\prime }}=\ln (C)-n\ln (U)+\frac{B}{V} }[/math]


Substituting Eqn.(TV-logn-mean)into Eqn. (TV-logn-pdf) yields the T-NT lognormal model [math]\displaystyle{ pdf }[/math] or:


[math]\displaystyle{ f(T,U,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\ln (C)+n\ln (U)-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]

Get More Details...
[Link2 See Examples...]



Docedit.png