Template:Bounds on lambda rsa: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '====Bounds on <math>\lambda </math>==== =====Fisher Matrix Bounds===== The parameter <math>\lambda </math> must be positive, thus <math>\ln \lambda </math> is approximately …')
(No difference)

Revision as of 22:37, 10 January 2012

Bounds on [math]\displaystyle{ \lambda }[/math]

Fisher Matrix Bounds

The parameter [math]\displaystyle{ \lambda }[/math] must be positive, thus [math]\displaystyle{ \ln \lambda }[/math] is approximately treated as being normally distributed. These bounds are based on:


[math]\displaystyle{ \frac{\ln (\widehat{\lambda })-\ln (\lambda )}{\sqrt{Var\left[ \ln (\widehat{\lambda }) \right]}}\ \tilde{\ }\ N(0,1) }[/math]


The approximate confidence bounds on [math]\displaystyle{ \lambda }[/math] are given as:


[math]\displaystyle{ C{{B}_{\lambda }}=\widehat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\widehat{\lambda })}/\widehat{\lambda }}} }[/math]


where [math]\displaystyle{ \widehat{\lambda }=\tfrac{n}{T_{K}^{{\hat{\beta }}}} }[/math] . The variance calculation is the same as Eqns. (var1), (var2) and (var3).

Crow Bounds

Time Terminated
The confidence bounds on [math]\displaystyle{ \lambda }[/math] for time terminated data are calculated using:


[math]\displaystyle{ \begin{align} & {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \\ & {{\lambda }_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \end{align} }[/math]


Failure Terminated
The confidence bounds on [math]\displaystyle{ \lambda }[/math] for failure terminated data are calculated using:


[math]\displaystyle{ \begin{align} & {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \\ & {{\lambda }_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \end{align} }[/math]