Template:Confidence bounds for competing failure modes: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '===Confidence Bounds for Competing Failure Modes=== The method available in Weibull++ for estimating the different types of confidence bounds, for competing failure modes analys…')
 
No edit summary
Line 3: Line 3:
The method available in Weibull++ for estimating the different types of confidence bounds, for competing failure modes analysis, is the Fisher matrix method, and is presented in this section.
The method available in Weibull++ for estimating the different types of confidence bounds, for competing failure modes analysis, is the Fisher matrix method, and is presented in this section.


[edit]Variance/Covariance Matrix
====Variance/Covariance Matrix====


The variances and covariances of the parameters are estimated from the inverse local Fisher matrix, as follows:
The variances and covariances of the parameters are estimated from the inverse local Fisher matrix, as follows:
Line 12: Line 12:
where  is the log-likelihood function of the failure distribution, described in Chapter 5.
where  is the log-likelihood function of the failure distribution, described in Chapter 5.


[edit]Bounds on Reliability


The competing failure modes reliability function is given by:
===Bounds on Reliability===


The competing failure modes reliability function is given by:


where:
::<math>\widehat{R}=\underset{i=1}{\overset{n}{\mathop \prod }}\,{{\hat{R}}_{i}}</math>
•   is the reliability of the  mode,
•   is the number of failure modes.
The upper and lower bounds on reliability are estimated using the logit transformation:


:where:
::• <math>{{R}_{i}}</math>  is the reliability of the  <math>{{i}^{th}}</math>  mode,
::• <math>n</math>  is the number of failure modes.


where  is calculated using Eqn. (CFMReliability).  is defined by:
The upper and lower bounds on reliability are estimated using the logit transformation:  


::<math>\begin{align}
  & {{R}_{U}}= & \frac{\widehat{R}}{\widehat{R}+(1-\widehat{R}){{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{R})}}{\widehat{R}(1-\widehat{R})}}}} \\
& {{R}_{L}}= & \frac{\widehat{R}}{\widehat{R}+(1-\widehat{R}){{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{R})}}{\widehat{R}(1-\widehat{R})}}}} 
\end{align}</math>


(If  is the confidence level, then  for the two-sided bounds, and  for the one-sided bounds.)
where  <math>\widehat{R}</math>  is calculated using Eqn. (CFMReliability).
<math>{{K}_{\alpha }}</math>  is defined by:


The variance of  is estimated by:
::<math>\alpha =\frac{1}{\sqrt{2\pi }}\underset{{{K}_{\alpha }}}{\overset{\infty }{\mathop \int }}\,{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt=1-\Phi ({{K}_{\alpha }})</math>


(If  <math>\delta </math>  is the confidence level, then  <math>\alpha =\tfrac{1-\delta }{2}</math>  for the two-sided bounds, and  <math>\alpha =1-\delta </math>  for the one-sided bounds.)


The variance of  <math>\widehat{R}</math>  is estimated by:


Thus:
::<math>Var(\widehat{R})=\underset{i=1}{\overset{n}{\mathop \sum }}\,{{\left( \frac{\partial R}{\partial {{R}_{i}}} \right)}^{2}}Var({{\hat{R}}_{i}})</math>


::<math>\frac{\partial R}{\partial {{R}_{i}}}=\underset{j=1,j\ne i}{\overset{n}{\mathop \prod }}\,\widehat{{{R}_{j}}}</math>


where  is an element of the model parameter vector.
:Thus:


Therefore, the value of  is dependent on the underlying distribution.
::<math>Var(\widehat{R})=\underset{i=1}{\overset{n}{\mathop \sum }}\,\left( \underset{j=1,j\ne i}{\overset{n}{\mathop \prod }}\,\widehat{R}_{j}^{2} \right)Var({{\hat{R}}_{i}})</math>


For the Weibull distribution:
::<math>Var({{\hat{R}}_{i}})=\underset{i=1}{\overset{n}{\mathop \sum }}\,{{\left( \frac{\partial {{R}_{i}}}{\partial {{a}_{i}}} \right)}^{2}}Var({{\hat{a}}_{i}})</math>


where  <math>\widehat{{{a}_{i}}}</math>  is an element of the model parameter vector. 


where:
Therefore, the value of  <math>Var({{\hat{R}}_{i}})</math>  is dependent on the underlying distribution.


and  is given in Chapter 6.
For the Weibull distribution:


For the exponential distribution:
::<math>Var({{\hat{R}}_{i}})={{\left( {{{\hat{R}}}_{i}}{{e}^{{{{\hat{u}}}_{i}}}} \right)}^{2}}Var({{\hat{u}}_{i}})</math>


:where:


where  is given in Chapter 7.
::<math>{{\hat{u}}_{i}}={{\hat{\beta }}_{i}}(\ln (t-{{\hat{\gamma }}_{i}})-\ln {{\hat{\eta }}_{i}})</math>


For the normal distribution:
and  <math>Var(\widehat{{{u}_{i}}})</math>  is given in Chapter 6.


For the exponential distribution:


::<math>Var({{\hat{R}}_{i}})={{\left( {{{\hat{R}}}_{i}}(t-{{{\hat{\gamma }}}_{i}}) \right)}^{2}}Var({{\hat{\lambda }}_{i}})</math>


where   is given in Chapter 8.
where <math>Var(\widehat{{{\lambda }_{i}}})</math>  is given in Chapter 7.


For the lognormal distribution:
For the normal distribution:  


::<math>Var({{\hat{R}}_{i}})={{\left( f({{{\hat{z}}}_{i}})\hat{\sigma } \right)}^{2}}Var({{\hat{z}}_{i}})</math>


where  is given in Chapter 9.
::<math>{{\hat{z}}_{i}}=\frac{t-{{{\hat{\mu }}}_{i}}}{{{{\hat{\sigma }}}_{i}}}</math>


[edit]Bounds on Time
where  <math>Var(\widehat{{{z}_{i}}})</math>  is given in Chapter 8.


The bounds on time are estimate by solving the reliability equation with respect to time. From Eqn. (CFMReliability) we have that:
:For the lognormal distribution:  


::<math>Var({{\hat{R}}_{i}})={{\left( f({{{\hat{z}}}_{i}})\cdot {{{\hat{\sigma }}}^{\prime }} \right)}^{2}}Var({{\hat{z}}_{i}})</math>


::<math>{{\hat{z}}_{i}}=\frac{\ln \text{(}t)-\hat{\mu }_{i}^{\prime }}{\hat{\sigma }_{i}^{\prime }}</math>


where:
where <math>Var(\widehat{{{z}_{i}}})</math> is given in Chapter 9.
•   is inverse function for Eqn. (CFMReliability)
• for the Weibull distribution  is  , and  is  
• for the exponential distribution  is   , and  =0
• for the normal distribution  is  , and  is  , and
• for the lognormal distribution  is  , and  is 
Set:


The bounds on   are estimated from:
===Bounds on Time===
The bounds on time are estimate by solving the reliability equation with respect to time. From Eqn. (CFMReliability) we have that:  


::<math>\hat{t}=\varphi (R,{{\hat{a}}_{i}},{{\hat{b}}_{i}})</math>
::<math>i=1,...,n</math>


and:
:where:
:• <math>\varphi </math>  is inverse function for Eqn. (CFMReliability)
:• for the Weibull distribution  <math>{{\hat{a}}_{i}}</math>  is  <math>{{\hat{\beta }}_{i}}</math> , and  <math>{{\hat{b}}_{i}}</math>  is  <math>{{\hat{\eta }}_{i}}</math>
:• for the exponential distribution  <math>{{\hat{a}}_{i}}</math>  is  <math>{{\hat{\lambda }}_{i}}</math> , and <math>{{\hat{b}}_{i}}</math>  =0
:• for the normal distribution  <math>{{\hat{a}}_{i}}</math>  is  <math>{{\hat{\mu }}_{i}}</math> , and  <math>{{\hat{b}}_{i}}</math>  is  <math>{{\hat{\sigma }}_{i}}</math> , and
:• for the lognormal distribution  <math>{{\hat{a}}_{i}}</math>  is  <math>\hat{\mu }_{i}^{\prime }</math> , and  <math>{{\hat{b}}_{i}}</math>  is  <math>\hat{\sigma }_{i}^{\prime }</math>


Then the upper and lower bounds on time are found by using the equations
:Set:


::<math>u=\ln (t)</math>


and:
The bounds on  <math>u</math>  are estimated from:  


is calculated using Eqn. (ka) and  is computed as:
::<math>{{u}_{U}}=\widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})}</math>


:and:


[edit]Complex Competing Failure Modes
::<math>{{u}_{L}}=\widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})}</math>


Then the upper and lower bounds on time are found by using the equations
::<math>{{t}_{U}}={{e}^{{{u}_{U}}}}</math>
:and:
::<math>{{t}_{L}}={{e}^{{{u}_{L}}}}</math>
<math>{{K}_{\alpha }}</math>  is calculated using Eqn. (ka) and  <math>Var(\widehat{u})</math>  is computed as:
::<math>Var(\widehat{u})=\underset{i=1}{\overset{n}{\mathop \sum }}\,\left( {{\left( \frac{\partial u}{\partial {{a}_{i}}} \right)}^{2}}Var(\widehat{{{a}_{i}}})+{{\left( \frac{\partial u}{\partial {{b}_{i}}} \right)}^{2}}Var(\widehat{{{b}_{i}}})+2\frac{\partial u}{\partial {{a}_{i}}}\frac{\partial u}{\partial {{b}_{i}}}Cov(\widehat{{{a}_{i}}},\widehat{{{b}_{i}}}) \right)</math>
===Complex Competing Failure Modes===
In addition to being viewed as a series system, the relationship between the different competing failures modes can be more complex. After performing separate analysis for each failure mode, a diagram that describes how each failure mode can result in a product failure can be used to perform analysis for the item in question. Such diagrams are usually referred to as Reliability Block Diagrams (RBD) (for more on RBDs see ReliaSoft's System Analysis Reference and ReliaSoft's BlockSim software).
In addition to being viewed as a series system, the relationship between the different competing failures modes can be more complex. After performing separate analysis for each failure mode, a diagram that describes how each failure mode can result in a product failure can be used to perform analysis for the item in question. Such diagrams are usually referred to as Reliability Block Diagrams (RBD) (for more on RBDs see ReliaSoft's System Analysis Reference and ReliaSoft's BlockSim software).


A reliability block diagram is made of blocks that represent the failure modes and arrows and connects the blocks in different configurations. Note that the blocks can also be used to represent different components or subsystems that make up the product. Weibull ++ provides the capability to use a diagram to model, series, parallel, k-out-of-n configurations in addition to any complex combinations of these configurations.
A reliability block diagram is made of blocks that represent the failure modes and arrows and connects the blocks in different configurations. Note that the blocks can also be used to represent different components or subsystems that make up the product. Weibull ++ provides the capability to use a diagram to model, series, parallel, k-out-of-n configurations in addition to any complex combinations of these configurations.


In this analysis, the failure modes are assumed to be statistically independent. (Note: In the context of this reference, statistically independent implies that failure information for one failure mode provides no information about, i.e. does not affect, other failure mode). Analysis of dependent modes is more complex. Advanced RBD software such as ReliaSoft's BlockSim can handle and analyze such dependencies, as well as provide more advanced constructs and analyses (see http://www.reliasoft.com/BlockSim).
In this analysis, the failure modes are assumed to be statistically independent. (Note: In the context of this reference, statistically independent implies that failure information for one failure mode provides no information about, i.e. does not affect, other failure mode). Analysis of dependent modes is more complex. Advanced RBD software such as ReliaSoft's BlockSim can handle and analyze such dependencies, as well as provide more advanced constructs and analyses (see http://www.reliasoft.com/BlockSim).

Revision as of 00:19, 5 January 2012

Confidence Bounds for Competing Failure Modes

The method available in Weibull++ for estimating the different types of confidence bounds, for competing failure modes analysis, is the Fisher matrix method, and is presented in this section.

Variance/Covariance Matrix

The variances and covariances of the parameters are estimated from the inverse local Fisher matrix, as follows:



where is the log-likelihood function of the failure distribution, described in Chapter 5.


Bounds on Reliability

The competing failure modes reliability function is given by:

[math]\displaystyle{ \widehat{R}=\underset{i=1}{\overset{n}{\mathop \prod }}\,{{\hat{R}}_{i}} }[/math]
where:
[math]\displaystyle{ {{R}_{i}} }[/math] is the reliability of the [math]\displaystyle{ {{i}^{th}} }[/math] mode,
[math]\displaystyle{ n }[/math] is the number of failure modes.

The upper and lower bounds on reliability are estimated using the logit transformation:

[math]\displaystyle{ \begin{align} & {{R}_{U}}= & \frac{\widehat{R}}{\widehat{R}+(1-\widehat{R}){{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{R})}}{\widehat{R}(1-\widehat{R})}}}} \\ & {{R}_{L}}= & \frac{\widehat{R}}{\widehat{R}+(1-\widehat{R}){{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{R})}}{\widehat{R}(1-\widehat{R})}}}} \end{align} }[/math]

where [math]\displaystyle{ \widehat{R} }[/math] is calculated using Eqn. (CFMReliability). [math]\displaystyle{ {{K}_{\alpha }} }[/math] is defined by:

[math]\displaystyle{ \alpha =\frac{1}{\sqrt{2\pi }}\underset{{{K}_{\alpha }}}{\overset{\infty }{\mathop \int }}\,{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt=1-\Phi ({{K}_{\alpha }}) }[/math]

(If [math]\displaystyle{ \delta }[/math] is the confidence level, then [math]\displaystyle{ \alpha =\tfrac{1-\delta }{2} }[/math] for the two-sided bounds, and [math]\displaystyle{ \alpha =1-\delta }[/math] for the one-sided bounds.)

The variance of [math]\displaystyle{ \widehat{R} }[/math] is estimated by:

[math]\displaystyle{ Var(\widehat{R})=\underset{i=1}{\overset{n}{\mathop \sum }}\,{{\left( \frac{\partial R}{\partial {{R}_{i}}} \right)}^{2}}Var({{\hat{R}}_{i}}) }[/math]
[math]\displaystyle{ \frac{\partial R}{\partial {{R}_{i}}}=\underset{j=1,j\ne i}{\overset{n}{\mathop \prod }}\,\widehat{{{R}_{j}}} }[/math]
Thus:
[math]\displaystyle{ Var(\widehat{R})=\underset{i=1}{\overset{n}{\mathop \sum }}\,\left( \underset{j=1,j\ne i}{\overset{n}{\mathop \prod }}\,\widehat{R}_{j}^{2} \right)Var({{\hat{R}}_{i}}) }[/math]
[math]\displaystyle{ Var({{\hat{R}}_{i}})=\underset{i=1}{\overset{n}{\mathop \sum }}\,{{\left( \frac{\partial {{R}_{i}}}{\partial {{a}_{i}}} \right)}^{2}}Var({{\hat{a}}_{i}}) }[/math]

where [math]\displaystyle{ \widehat{{{a}_{i}}} }[/math] is an element of the model parameter vector.

Therefore, the value of [math]\displaystyle{ Var({{\hat{R}}_{i}}) }[/math] is dependent on the underlying distribution.

For the Weibull distribution:

[math]\displaystyle{ Var({{\hat{R}}_{i}})={{\left( {{{\hat{R}}}_{i}}{{e}^{{{{\hat{u}}}_{i}}}} \right)}^{2}}Var({{\hat{u}}_{i}}) }[/math]
where:
[math]\displaystyle{ {{\hat{u}}_{i}}={{\hat{\beta }}_{i}}(\ln (t-{{\hat{\gamma }}_{i}})-\ln {{\hat{\eta }}_{i}}) }[/math]

and [math]\displaystyle{ Var(\widehat{{{u}_{i}}}) }[/math] is given in Chapter 6.

For the exponential distribution:

[math]\displaystyle{ Var({{\hat{R}}_{i}})={{\left( {{{\hat{R}}}_{i}}(t-{{{\hat{\gamma }}}_{i}}) \right)}^{2}}Var({{\hat{\lambda }}_{i}}) }[/math]

where [math]\displaystyle{ Var(\widehat{{{\lambda }_{i}}}) }[/math] is given in Chapter 7.

For the normal distribution:

[math]\displaystyle{ Var({{\hat{R}}_{i}})={{\left( f({{{\hat{z}}}_{i}})\hat{\sigma } \right)}^{2}}Var({{\hat{z}}_{i}}) }[/math]
[math]\displaystyle{ {{\hat{z}}_{i}}=\frac{t-{{{\hat{\mu }}}_{i}}}{{{{\hat{\sigma }}}_{i}}} }[/math]

where [math]\displaystyle{ Var(\widehat{{{z}_{i}}}) }[/math] is given in Chapter 8.

For the lognormal distribution:
[math]\displaystyle{ Var({{\hat{R}}_{i}})={{\left( f({{{\hat{z}}}_{i}})\cdot {{{\hat{\sigma }}}^{\prime }} \right)}^{2}}Var({{\hat{z}}_{i}}) }[/math]
[math]\displaystyle{ {{\hat{z}}_{i}}=\frac{\ln \text{(}t)-\hat{\mu }_{i}^{\prime }}{\hat{\sigma }_{i}^{\prime }} }[/math]

where [math]\displaystyle{ Var(\widehat{{{z}_{i}}}) }[/math] is given in Chapter 9.

Bounds on Time

The bounds on time are estimate by solving the reliability equation with respect to time. From Eqn. (CFMReliability) we have that:

[math]\displaystyle{ \hat{t}=\varphi (R,{{\hat{a}}_{i}},{{\hat{b}}_{i}}) }[/math]
[math]\displaystyle{ i=1,...,n }[/math]
where:
[math]\displaystyle{ \varphi }[/math] is inverse function for Eqn. (CFMReliability)
• for the Weibull distribution [math]\displaystyle{ {{\hat{a}}_{i}} }[/math] is [math]\displaystyle{ {{\hat{\beta }}_{i}} }[/math] , and [math]\displaystyle{ {{\hat{b}}_{i}} }[/math] is [math]\displaystyle{ {{\hat{\eta }}_{i}} }[/math]
• for the exponential distribution [math]\displaystyle{ {{\hat{a}}_{i}} }[/math] is [math]\displaystyle{ {{\hat{\lambda }}_{i}} }[/math] , and [math]\displaystyle{ {{\hat{b}}_{i}} }[/math] =0
• for the normal distribution [math]\displaystyle{ {{\hat{a}}_{i}} }[/math] is [math]\displaystyle{ {{\hat{\mu }}_{i}} }[/math] , and [math]\displaystyle{ {{\hat{b}}_{i}} }[/math] is [math]\displaystyle{ {{\hat{\sigma }}_{i}} }[/math] , and
• for the lognormal distribution [math]\displaystyle{ {{\hat{a}}_{i}} }[/math] is [math]\displaystyle{ \hat{\mu }_{i}^{\prime } }[/math] , and [math]\displaystyle{ {{\hat{b}}_{i}} }[/math] is [math]\displaystyle{ \hat{\sigma }_{i}^{\prime } }[/math]
Set:
[math]\displaystyle{ u=\ln (t) }[/math]

The bounds on [math]\displaystyle{ u }[/math] are estimated from:

[math]\displaystyle{ {{u}_{U}}=\widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]
and:
[math]\displaystyle{ {{u}_{L}}=\widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})} }[/math]

Then the upper and lower bounds on time are found by using the equations

[math]\displaystyle{ {{t}_{U}}={{e}^{{{u}_{U}}}} }[/math]
and:
[math]\displaystyle{ {{t}_{L}}={{e}^{{{u}_{L}}}} }[/math]

[math]\displaystyle{ {{K}_{\alpha }} }[/math] is calculated using Eqn. (ka) and [math]\displaystyle{ Var(\widehat{u}) }[/math] is computed as:

[math]\displaystyle{ Var(\widehat{u})=\underset{i=1}{\overset{n}{\mathop \sum }}\,\left( {{\left( \frac{\partial u}{\partial {{a}_{i}}} \right)}^{2}}Var(\widehat{{{a}_{i}}})+{{\left( \frac{\partial u}{\partial {{b}_{i}}} \right)}^{2}}Var(\widehat{{{b}_{i}}})+2\frac{\partial u}{\partial {{a}_{i}}}\frac{\partial u}{\partial {{b}_{i}}}Cov(\widehat{{{a}_{i}}},\widehat{{{b}_{i}}}) \right) }[/math]

Complex Competing Failure Modes

In addition to being viewed as a series system, the relationship between the different competing failures modes can be more complex. After performing separate analysis for each failure mode, a diagram that describes how each failure mode can result in a product failure can be used to perform analysis for the item in question. Such diagrams are usually referred to as Reliability Block Diagrams (RBD) (for more on RBDs see ReliaSoft's System Analysis Reference and ReliaSoft's BlockSim software).

A reliability block diagram is made of blocks that represent the failure modes and arrows and connects the blocks in different configurations. Note that the blocks can also be used to represent different components or subsystems that make up the product. Weibull ++ provides the capability to use a diagram to model, series, parallel, k-out-of-n configurations in addition to any complex combinations of these configurations.

In this analysis, the failure modes are assumed to be statistically independent. (Note: In the context of this reference, statistically independent implies that failure information for one failure mode provides no information about, i.e. does not affect, other failure mode). Analysis of dependent modes is more complex. Advanced RBD software such as ReliaSoft's BlockSim can handle and analyze such dependencies, as well as provide more advanced constructs and analyses (see http://www.reliasoft.com/BlockSim).