Weibull++ Standard Folio Data Gumbel: Difference between revisions
(Created page with 'test') |
No edit summary |
||
Line 1: | Line 1: | ||
{{Template:NoSkin}} | |||
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" | |||
|- | |||
! scope="col" | | |||
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}} | |||
|- | |||
| align="center" valign="middle" |{{Font|Weibull Folio|11|tahoma|bold|gray}} | |||
|- | |||
| align="center" valign="middle" | {{Font|Life Data Analysis|10|tahoma|bold|gray}} | |||
|- | |||
| align="center" valign="middle" | | |||
The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It can model an increasing, decreasing and or constant failure rate behavior. The 2-parameter Weibull is the most commonly used form of the distribution. It's pdf is given by: | |||
|- | |||
| align="center" valign="middle" | | |||
<br><math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math> | |||
<br>Beta is the shape parameter or slope. Values less than one incicate a decreasing failure rate, greater then one an increasing failure rate, and when one a constant failure rate. Eta is the scale parameter, or characteristic life. Eta represents the time by which 63.2% of the units fail.<br> | |||
<br><math> \beta= </math> shape parameter (or slope). | |||
|- | |||
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution Get More Details...] | |||
|- | |||
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/Weibull_Examples_2P See Examples...] | |||
|} | |||
<br> | |||
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_Gumbel&action=edit]] |
Revision as of 16:57, 20 December 2011
Reliability Web Notes |
---|
Weibull Folio |
Life Data Analysis |
The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It can model an increasing, decreasing and or constant failure rate behavior. The 2-parameter Weibull is the most commonly used form of the distribution. It's pdf is given by: |
|
Get More Details... |
See Examples... |