Weibull++ Standard Folio Data Lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 15: Line 15:




The lognormal distribution is a two-parameter distribution with parameters  <math>{\mu }'</math>  and  <math>{{\sigma }_{{{T}'}}}</math> . The  <math>pdf</math>  for this distribution is given by:  
The lognormal distribution is a two-parameter distribution with parameters  <br>
<math>{\mu }'</math>  and  <math>{{\sigma }_{{{T}'}}}</math>. <br> The ''pdf'' is given by:  


::<math>f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
::<math>f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
 
<br> where,  
where, <math>{T}'=\ln (T)</math>. , where the  <math>T</math>  values are the times-to-failure, and  
<br><math>{T}'=\ln (T)</math>. , where the  <math>T</math>  values are the times-to-failure, and  
 
:<math>\mu'=\text{mean of the natural logarithms}</math>
:<math>\mu'=\text{mean of the natural logarithms}</math>
   
   

Revision as of 19:03, 11 November 2011

Reliability Web Notes

Weibull Folio
Life Data Analysis

The lognormal distribution is commonly used to model the lives of units whose failure modes are of a fatigue-stress nature. It has an increasing failure rate behavior and then decreasing towards the end of life.


The lognormal distribution is a two-parameter distribution with parameters
[math]\displaystyle{ {\mu }' }[/math] and [math]\displaystyle{ {{\sigma }_{{{T}'}}} }[/math].
The pdf is given by:

[math]\displaystyle{ f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]


where,
[math]\displaystyle{ {T}'=\ln (T) }[/math]. , where the [math]\displaystyle{ T }[/math] values are the times-to-failure, and

[math]\displaystyle{ \mu'=\text{mean of the natural logarithms} }[/math]
[math]\displaystyle{ \text{of the times-to-failure,} }[/math]
[math]\displaystyle{ \sigma_{T'}=\text{standard deviation of the natural logarithms} }[/math]
[math]\displaystyle{ \text{of the times-to-failure} }[/math]


Get More Details...
See Examples...










Docedit.png